Linear measures of some sets of the Cantor type

1957 ◽  
Vol 53 (2) ◽  
pp. 312-317 ◽  
Author(s):  
Trevor J. Mcminn

1. Introduction. Let 0 < λ < 1 and remove from the closed unit interval the open interval of length λ concentric with the unit interval. From each of the two remaining closed intervals of length ½(1 − λ) remove the concentric open interval of length ½λ(1 − λ). From each of the four remaining closed intervals of length ¼λ(1 − λ)2 remove the concentric open interval of length ¼λ(l − λ)2, etc. The remaining set is a perfect non-dense set of Lebesgue measure zero and is the Cantor set for λ = ⅓. Let Tλr be the Cartesian product of this set with the set similar to it obtained by magnifying it by a factor r > 0. Letting L be Carathéodory linear measure (1) and letting G be Gillespie linear square(2), Randolph(3) has established the following relations:

1972 ◽  
Vol 24 (5) ◽  
pp. 957-966 ◽  
Author(s):  
G. J. Butler ◽  
F. B. Richards

Let 1 be a subdivision of [0, 1], and let denote the class of functions whose restriction to each sub-interval is a polynomial of degree at most k. Gaier [1] has shown that for uniform subdivisions △n (that is, subdivisions for which if and only if f is a polynomial of degree at most k. Here, and subsequently, denotes the usual norm in Lp[0, 1], 1 ≦ p ≦ ∞, and we should emphasize that functions differing only on a set of Lebesgue measure zero are identified.


2020 ◽  
pp. 1-33
Author(s):  
PIETER ALLAART ◽  
DERONG KONG

Fix an alphabet $A=\{0,1,\ldots ,M\}$ with $M\in \mathbb{N}$ . The univoque set $\mathscr{U}$ of bases $q\in (1,M+1)$ in which the number $1$ has a unique expansion over the alphabet $A$ has been well studied. It has Lebesgue measure zero but Hausdorff dimension one. This paper describes how the points in the set $\mathscr{U}$ are distributed over the interval $(1,M+1)$ by determining the limit $$\begin{eqnarray}f(q):=\lim _{\unicode[STIX]{x1D6FF}\rightarrow 0}\dim _{\text{H}}(\mathscr{U}\cap (q-\unicode[STIX]{x1D6FF},q+\unicode[STIX]{x1D6FF}))\end{eqnarray}$$ for all $q\in (1,M+1)$ . We show in particular that $f(q)>0$ if and only if $q\in \overline{\mathscr{U}}\backslash \mathscr{C}$ , where $\mathscr{C}$ is an uncountable set of Hausdorff dimension zero, and $f$ is continuous at those (and only those) points where it vanishes. Furthermore, we introduce a countable family of pairwise disjoint subsets of $\mathscr{U}$ called relative bifurcation sets, and use them to give an explicit expression for the Hausdorff dimension of the intersection of $\mathscr{U}$ with any interval, answering a question of Kalle et al [On the bifurcation set of unique expansions. Acta Arith. 188 (2019), 367–399]. Finally, the methods developed in this paper are used to give a complete answer to a question of the first author [On univoque and strongly univoque sets. Adv. Math.308 (2017), 575–598] on strongly univoque sets.


1975 ◽  
Vol 78 (3) ◽  
pp. 483-491 ◽  
Author(s):  
John Hawkes

Suppose that f and g are measure functions and that µf and µg are the corresponding Hausdorff measures. We are interested in how relationships between f and g are reflected in relationships between µf and µg and vice versa. For example, ifRogers ((8), p. 80) has shown that there exists a metric space Ω which has subsets A and B with µf(A) = µg(B) = 0 and, µf(B) = µg(A) = ∞. We are more interested in what happens when the metric space in question is the real line. To get the above result we need to assume that both f and g are starshaped. This is just about a best possible result since if we assume only that f is a power of t the conclusion fails. Further-more we show that there exist measure functions f and g satisfying (1) such that µf and, µg are identical. We also consider related questions: when are, µf and, µg equivalent measures and when are they identical?The proofs depend on the construction in Theorem 3.1 of a Cantor set having pre-scribed measure properties. Although the construction is not difficult it turns out to be quite useful to appeal to the existence of such a set. We illustrate this remark by giving a short proof of a known theorem on cartesian product sets. We also make use of these ideas in section 5 where we discuss some properties of a class of net meastues and give a partial answer to a problem posed by Billingsley.


1978 ◽  
Vol 1 (4) ◽  
pp. 541-546 ◽  
Author(s):  
Ken W. Lee

A non-endpoint of the Cantor ternary set is any Cantor point which is not an endpoint of one of the remaining closed intervals obtained in the usual construction process of the Cantor ternary set in the unit interval. It is shown that the set of points in the unit interval which are not midway between two distinct Cantor ternary points is precisely the set of Cantor nonendpoints. It is also shown that the generalized Cantor setCλ, for1/3<λ<1, has void intersection with its set of midpoints obtained from distinct members ofCλ.


2015 ◽  
Vol 93 (2) ◽  
pp. 272-282 ◽  
Author(s):  
JAEYOUNG CHUNG ◽  
JOHN MICHAEL RASSIAS

Let $G$ be a commutative group, $Y$ a real Banach space and $f:G\rightarrow Y$. We prove the Ulam–Hyers stability theorem for the cyclic functional equation $$\begin{eqnarray}\displaystyle \frac{1}{|H|}\mathop{\sum }_{h\in H}f(x+h\cdot y)=f(x)+f(y) & & \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in {\rm\Omega}$, where $H$ is a finite cyclic subgroup of $\text{Aut}(G)$ and ${\rm\Omega}\subset G\times G$ satisfies a certain condition. As a consequence, we consider a measure zero stability problem of the functional equation $$\begin{eqnarray}\displaystyle \frac{1}{N}\mathop{\sum }_{k=1}^{N}f(z+{\it\omega}^{k}{\it\zeta})=f(z)+f({\it\zeta}) & & \displaystyle \nonumber\end{eqnarray}$$ for all $(z,{\it\zeta})\in {\rm\Omega}$, where $f:\mathbb{C}\rightarrow Y,\,{\it\omega}=e^{2{\it\pi}i/N}$ and ${\rm\Omega}\subset \mathbb{C}^{2}$ has four-dimensional Lebesgue measure $0$.


2016 ◽  
Vol 10 (1) ◽  
pp. 51-64
Author(s):  
TAMAR LANDO

AbstractWe study the measure semantics for propositional modal logics, in which formulas are interpreted in the Lebesgue measure algebra${\cal M}$, or algebra of Borel subsets of the real interval [0,1] modulo sets of measure zero. It was shown in Lando (2012) and Fernández-Duque (2010) that the propositional modal logic S4 is complete for the Lebesgue measure algebra. The main result of the present paper is that every logic L aboveS4 is complete for some subalgebra of ${\cal M}$. Indeed, there is a single model over a subalgebra of ${\cal M}$ in which all nontheorems of L are refuted. This work builds on recent work by Bezhanishvili, Gabelaia, & Lucero-Bryan (2015) on the topological semantics for logics above S4. In Bezhanishvili et al., (2015), it is shown that there are logics above that are not the logic of any subalgebra of the interior algebra over the real line, ${\cal B}$(ℝ), but that every logic above is the logic of some subalgebra of the interior algebra over the rationals, ${\cal B}$(ℚ), and the interior algebra over Cantor space, ${\cal B}\left( {\cal C} \right)$.


1965 ◽  
Vol 8 (1) ◽  
pp. 73-76 ◽  
Author(s):  
A. M. Bruckner ◽  
John L. Leonard

The Cantor function C [2; p. 213], which appears in analysis as a simple example of a continuous increasing function which is not absolutely continuous, has the following properties:(i)C is defined on [0,1], with C(0) = 0, C (l) = l;(ii)C is continuous and non-decreasing on [0,1];(iii)C is constant on each interval contiguous to the perfect Cantor set P;(iv)C fails to be constant on any open interval containing points of P;(v)The set of points at which C is non-differentiable is non-denumerable.


1991 ◽  
Vol 56 (1) ◽  
pp. 103-107
Author(s):  
Maxim R. Burke

AbstractWe investigate the cofinality of the partial order κ of functions from a regular cardinal κ into the ideal of Lebesgue measure zero subsets of R. We show that when add () = κ and the covering lemma holds with respect to an inner model of GCH, then cf (κ) = max{cf(κκ), cf([cf()]κ)}. We also give an example to show that the covering assumption cannot be removed.


1973 ◽  
Vol 16 (4) ◽  
pp. 416-430 ◽  
Author(s):  
John Boris Miller

Let (G, ≼) be an l-group having a compatible tight Riesz order ≦ with open-interval topology U, and H a normal subgroup. The first part of the paper concerns the question: Under what conditions on H is the structure of (G, ≼, ∧, ∨, ≦, U) carried over satisfactorily to by the canonical homomorphism; and its answer (Theorem 8°): H should be an l-ideal of (G, ≼) closed and not open in (G, U). Such a normal subgroup is here called a tangent. An essential step is to show that ≼′ is the associated order of ≦′.


2008 ◽  
Vol 51 (2) ◽  
pp. 337-362 ◽  
Author(s):  
Torben Fattler ◽  
Martin Grothaus

AbstractWe give a Dirichlet form approach for the construction and analysis of elliptic diffusions in $\bar{\varOmega}\subset\mathbb{R}^n$ with reflecting boundary condition. The problem is formulated in an $L^2$-setting with respect to a reference measure $\mu$ on $\bar{\varOmega}$ having an integrable, $\mathrm{d} x$-almost everywhere (a.e.) positive density $\varrho$ with respect to the Lebesgue measure. The symmetric Dirichlet forms $(\mathcal{E}^{\varrho,a},D(\mathcal{E}^{\varrho,a}))$ we consider are the closure of the symmetric bilinear forms\begin{gather*} \mathcal{E}^{\varrho,a}(f,g)=\sum_{i,j=1}^n\int_{\varOmega}\partial_ifa_{ij} \partial_jg\,\mathrm{d}\mu,\quad f,g\in\mathcal{D}, \\ \mathcal{D}=\{f\in C(\bar{\varOmega})\mid f\in W^{1,1}_{\mathrm{loc}}(\varOmega),\ \mathcal{E}^{\varrho,a}(f,f)\lt\infty\}, \end{gather*}in $L^2(\bar{\varOmega},\mu)$, where $a$ is a symmetric, elliptic, $n\times n$-matrix-valued measurable function on $\bar{\varOmega}$. Assuming that $\varOmega$ is an open, relatively compact set with boundary $\partial\varOmega$ of Lebesgue measure zero and that $\varrho$ satisfies the Hamza condition, we can show that $(\mathcal{E}^{\varrho,a},D(\mathcal{E}^{\varrho,a}))$ is a local, quasi-regular Dirichlet form. Hence, it has an associated self-adjoint generator $(L^{\varrho,a},D(L^{\varrho,a}))$ and diffusion process $\bm{M}^{\varrho,a}$ (i.e. an associated strong Markov process with continuous sample paths). Furthermore, since $1\in D(\mathcal{E}^{\varrho,a})$ (due to the Neumann boundary condition) and $\mathcal{E}^{\varrho,a}(1,1)=0$, we obtain a conservative process $\bm{M}^{\varrho,a}$ (i.e. $\bm{M}^{\varrho,a}$ has infinite lifetime). Additionally, assuming that $\sqrt{\varrho}\in W^{1,2}(\varOmega)\cap C(\bar{\varOmega})$ or that $\varrho$ is bounded, $\varOmega$ is convex and $\{\varrho=0\}$ has codimension at least 2, we can show that the set $\{\varrho=0\}$ has $\mathcal{E}^{\varrho,a}$-capacity zero. Therefore, in this case we can even construct an associated conservative diffusion process in $\{\varrho>0\}$. This is essential for our application to continuous $N$-particle systems with singular interactions. Note that for the construction of the self-adjoint generator $(L^{\varrho,a},D(L^{\varrho,a}))$ and the Markov process $\bm{M}^{\varrho,a}$ we do not need to assume any differentiability condition on $\varrho$ and $a$. We obtain the following explicit representation of the generator for $\sqrt{\varrho}\in W^{1,2}(\varOmega)$ and $a\in W^{1,\infty}(\varOmega)$:$$ L^{\varrho,a}=\sum_{i,j=1}^n\partial_i(a_{ij}\partial_j)+\partial_i(\log\varrho)a_{ij}\partial_j. $$Note that the drift term can be singular, because we allow $\varrho$ to be zero on a set of Lebesgue measure zero. Our assumptions in this paper even allow a drift that is not integrable with respect to the Lebesgue measure.


Sign in / Sign up

Export Citation Format

Share Document