scholarly journals Properties of independently axiomatizable bimodal logics

1991 ◽  
Vol 56 (4) ◽  
pp. 1469-1485 ◽  
Author(s):  
Marcus Kracht ◽  
Frank Wolter

In monomodal logic there are a fair number of high-powered results on completeness covering large classes of modal systems; witness for example Fine [74], [85] and Sahlqvist [75]. Monomodal logic is therefore a well-understood subject in contrast to polymodal logic, where even the most elementary questions concerning completeness, decidability, etc. have been left unanswered. Given that in many applications of modal logic one modality is not sufficient, the lack of general results is acutely felt by the “users” of modal logics, contrary to logicians who might entertain the view that a deep understanding of one modality alone provides enough insight to be able to generalize the results to logics with several modalities. Although this view has its justification, the main results we are going to prove are certainly not of this type, for they require a fundamentally new technique. The results obtained are called transfer theorems in Fine and Schurz [91] and are of the following type. Let L ∌ ⊥ be an independently axiomatizable bimodal logic and L⎕ and L∎ its monomodal fragments. Then L has a property P iff L⎕ and L∎ have P. Properties which will be discussed are completeness, the finite model property, compactness, persistence, interpolation and Halldén-completeness. In our discussion we will prove transfer theorems for the simplest case when there are just two modal operators, but it will be clear that the proof works in the general case as well.

Author(s):  
Fei Liang ◽  
Zhe Lin

Implicative semi-lattices (also known as Brouwerian semi-lattices) are a generalization of Heyting algebras, and have been already well studied both from a logical and an algebraic perspective. In this paper, we consider the variety ISt of the expansions of implicative semi-lattices with tense modal operators, which are algebraic models of the disjunction-free fragment of intuitionistic tense logic. Using methods from algebraic proof theory, we show that the logic of tense implicative semi-lattices has the finite model property. Combining with the finite axiomatizability of the logic, it follows that the logic is decidable.


1984 ◽  
Vol 49 (2) ◽  
pp. 520-527 ◽  
Author(s):  
M. J. Cresswell

The most common way of proving decidability in propositional modal logic is to shew that the system in question has the finite model property. This is not however the only way. Gabbay in [4] proves the decidability of many modal systems using Rabin's result in [8] on the decidability of the second-order theory of successor functions. In particular [4, pp. 258-265] he is able to prove the decidability of a system which lacks the finite model property. Gabbay's system is however complete, in the sense of being characterized by a class of frames, and the question arises whether there is a decidable modal logic which is not complete. Since no incomplete modal logic has the finite model property [9, p. 33], any proof of decidability must employ some such method as Gabbay's. In this paper I use the Gabbay/Rabin technique to prove the decidability of a finitely axiomatized normal modal propositional logic which is not characterized by any class of frames. I am grateful to the referee for suggesting improvements in substance and presentation.The terminology I am using is standard in modal logic. By a frame is understood a pair 〈W, R〉 in which W is a class (of “possible worlds”) and R ⊆ W2. To avoid confusion in what follows, a frame will henceforth be referred to as a Kripke frame. By contrast, a general frame is a pair 〈, Π〉 in which is a Kripke frame and Π is a collection of subsets of W closed under the Boolean operations and satisfying the condition that if A is in Π then so is R−1 “A. A model on a frame (of either kind) is obtained by adding a function V which assigns sets of worlds to propositional variables. In the case of a general frame we require that V(p) ∈ Π.


1993 ◽  
Vol 58 (1) ◽  
pp. 139-157 ◽  
Author(s):  
Marcus Kracht

AbstractAn old conjecture of modal logics states that every splitting of the major systems K4, S4, G and Grz has the finite model property. In this paper we will prove that all iterated splittings of G have fmp, whereas in the other cases we will give explicit counterexamples. We also introduce a proof technique which will give a positive answer for large classes of splitting frames. The proof works by establishing a rather strong property of these splitting frames namely that they preserve the finite model property in the following sense. Whenever an extension Λ has fmp so does the splitting Λ/f of Λ by f. Although we will also see that this method has its limitations because there are frames lacking this property, it has several desirable side effects. For example, properties such as compactness, decidability and others can be shown to be preserved in a similar way and effective bounds for the size of models can be given. Moreover, all methods and proofs are constructive.


2009 ◽  
Vol 74 (4) ◽  
pp. 1171-1205 ◽  
Author(s):  
Emil Jeřábek

AbstractWe develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia theorem and the theory of modal companions to systems of multiple-conclusion rules or (unitary structural global) consequence relations, and a characterization of splittings in the lattices of consequence relations over monomodal or superintuitionistic logics with the finite model property.


2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Giovanna D’Agostino ◽  
Giacomo Lenzi

AbstractIn this paper we consider the alternation hierarchy of the modal μ-calculus over finite symmetric graphs and show that in this class the hierarchy is infinite. The μ-calculus over the symmetric class does not enjoy the finite model property, hence this result is not a trivial consequence of the strictness of the hierarchy over symmetric graphs. We also find a lower bound and an upper bound for the satisfiability problem of the μ-calculus over finite symmetric graphs.


Author(s):  
Ronald Harrop

In this paper we will be concerned primarily with weak, strong and simple models of a propositional calculus, simple models being structures of a certain type in which all provable formulae of the calculus are valid. It is shown that the finite model property defined in terms of simple models holds for all calculi. This leads to a new proof of the fact that there is no general effective method for testing, given a finite structure and a calculus, whether or not the structure is a simple model of the calculus.


2012 ◽  
Vol 77 (3) ◽  
pp. 729-765 ◽  
Author(s):  
Emanuel Kieroński ◽  
Martin Otto

AbstractWe study first-order logic with two variables FO2 and establish a small substructure property. Similar to the small model property for FO2 we obtain an exponential size bound on embedded substructures, relative to a fixed surrounding structure that may be infinite. We apply this technique to analyse the satisfiability problem for FO2 under constraints that require several binary relations to be interpreted as equivalence relations. With a single equivalence relation, FO2 has the finite model property and is complete for non-deterministic exponential time, just as for plain FO2. With two equivalence relations, FO2 does not have the finite model property, but is shown to be decidable via a construction of regular models that admit finite descriptions even though they may necessarily be infinite. For three or more equivalence relations, FO2 is undecidable.


1997 ◽  
pp. 239-313
Author(s):  
Egon Börger ◽  
Erich Grädel ◽  
Yuri Gurevich

Sign in / Sign up

Export Citation Format

Share Document