scholarly journals On the Decidability of Intuitionistic Tense Logic without Disjunction

Author(s):  
Fei Liang ◽  
Zhe Lin

Implicative semi-lattices (also known as Brouwerian semi-lattices) are a generalization of Heyting algebras, and have been already well studied both from a logical and an algebraic perspective. In this paper, we consider the variety ISt of the expansions of implicative semi-lattices with tense modal operators, which are algebraic models of the disjunction-free fragment of intuitionistic tense logic. Using methods from algebraic proof theory, we show that the logic of tense implicative semi-lattices has the finite model property. Combining with the finite axiomatizability of the logic, it follows that the logic is decidable.

2015 ◽  
Vol 25 (03) ◽  
pp. 349-379 ◽  
Author(s):  
R. Cardona ◽  
N. Galatos

The finite embeddability property (FEP) for knotted extensions of residuated lattices holds under the assumption of commutativity, but fails in the general case. We identify weaker forms of the commutativity identity which ensure that the FEP holds. The results have applications outside of order algebra to non-classical logic, establishing the strong finite model property (SFMP) and the decidability for deductions, as well as to mathematical linguistics and automata theory, providing new conditions for recognizability of languages. Our proofs make use of residuated frames, developed in the context of algebraic proof theory.


1968 ◽  
Vol 33 (1) ◽  
pp. 27-38 ◽  
Author(s):  
R. A. Bull

In [2] Prior puts forward a tense logic, GH1, which is intended to axiomatise tense logic with time linear and rational; he also contemplates the tense logic with time linear and real. The purpose of this paper is to give completeness proofs for three axiom systems, GH1, GHlr, GHli, with respect to tense logic with time linear and rational, real, and integral, respectively.1 In a fourth section I show that GH1 and GHlr have the finite model property, but that GHli lacks it.GH1 has the operators of the classical propositional calculus, together with operators P, H, F, G for ‘It has been the case that’, ‘It has always been the case that’, ‘It will be the case that’, ‘It will always be the case that’, respectively.


1969 ◽  
Vol 34 (2) ◽  
pp. 215-218 ◽  
Author(s):  
R. A. Bull

In [1, §4], my ‘proof’ that GH1 has the finite model property is incorrect; there are considerable obscurities towards the end of §1, particularly on p. 33; and I should have exhibited the finite models for GH1. In §1 of this paper I expand the analysis of the sub-directly irreducible models for GH1 which I give in §1 of [1]. In §2 I give a correct proof that GH1 has the finite model property. In §3 I exhibit these finite models as models on certain ordered sets.


2005 ◽  
Vol 70 (1) ◽  
pp. 84-98 ◽  
Author(s):  
C. J. van Alten

AbstractThe logics considered here are the propositional Linear Logic and propositional Intuitionistic Linear Logic extended by a knotted structural rule: . It is proved that the class of algebraic models for such a logic has the finite embeddability property, meaning that every finite partial subalgebra of an algebra in the class can be embedded into a finite full algebra in the class. It follows that each such logic has the finite model property with respect to its algebraic semantics and hence that the logic is decidable.


1995 ◽  
Vol 60 (3) ◽  
pp. 757-774 ◽  
Author(s):  
Frank Wolter

AbstractTense logics in the bimodal propositional language are investigated with respect to the Finite Model Property. In order to prove positive results techniques from investigations of modal logics above K4 are extended to tense logic. General negative results show the limits of the transfer.


1970 ◽  
Vol 35 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Patrick Schindler

Prior has conjectured that the tense-logical system Gli obtained by adding to a complete basis for the classical propositional calculus the primitive symbol G, the definitionsDf. F: Fα = NGNαDf. L: Lα = KαGα,and the postulatesis complete for the logic of linear, infinite, transitive, discrete future time. In this paper it is demonstrated that that conjecture is correct and it is shown that Gli has the finite model property: see [4]. The techniques used are in part suggested by those used in Bull [2] and [3]:Gli can be shown to be complete for the logic of linear, infinite, transitive, discrete future time in the sense that every formula of Gli which is true of such time can be proved as a theorem of Gli. For this purpose the notion of truth needs to be formalized. This formalization is effected by the construction of a model for linear, infinite, transitive, discrete future time.


2009 ◽  
Vol 74 (4) ◽  
pp. 1171-1205 ◽  
Author(s):  
Emil Jeřábek

AbstractWe develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia theorem and the theory of modal companions to systems of multiple-conclusion rules or (unitary structural global) consequence relations, and a characterization of splittings in the lattices of consequence relations over monomodal or superintuitionistic logics with the finite model property.


2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Giovanna D’Agostino ◽  
Giacomo Lenzi

AbstractIn this paper we consider the alternation hierarchy of the modal μ-calculus over finite symmetric graphs and show that in this class the hierarchy is infinite. The μ-calculus over the symmetric class does not enjoy the finite model property, hence this result is not a trivial consequence of the strictness of the hierarchy over symmetric graphs. We also find a lower bound and an upper bound for the satisfiability problem of the μ-calculus over finite symmetric graphs.


Sign in / Sign up

Export Citation Format

Share Document