Analytic cell decomposition and the closure of p-adic semianalytic sets

1997 ◽  
Vol 62 (1) ◽  
pp. 285-303
Author(s):  
Nianzheng Liu

The p-adic semianalytic sets are defined, locally, as boolean combinations of sets of the form over the p-adic fields ℚp, where f is an analytic function. A well-know example due to Osgood showed the projection of a semianalytic set need not be a semianalytic set. We call those sets that are, locally, the projections of p-adic semianalytic sets p-adic subanalytic sets. The theory of p-adic subanalytic sets was presented by Denef and Van den Dries in [5]. The basic tools are the quantifier elimination techniques together with the ultrametric Weierstrass Preparation Theorem. Simultaneously with their developments of the p-adic subanalytic sets, they established some basic properties of p-adic semianalytic sets.In this paper, we prove that the closure of any p-adic semianalytic set is also a semianalytic set. The analogous property for real semianalytic sets was proved in [12] and that for rigid semianalytic sets, informed by the referee, has been proved recently by a quite different method in [14] (cf. [9]). The keys to the proof are a separation lemma (Lemma 2) and an analytic cell decomposition theorem (Theorem 2) which is an analytic version of Denef's cell decomposition theorem (see [3, 4]; A total different form of anayltic cells appeared in [13]). The analytic cell decomposition theorem allows us to partition certain kinds of basic subsets into analytic cells that possess the closure property (see §1 for the definition).


2017 ◽  
Vol 82 (1) ◽  
pp. 120-136 ◽  
Author(s):  
LUCK DARNIÈRE ◽  
IMMANUEL HALPUCZOK

AbstractWe prove that forp-optimal fields (a very large subclass ofp-minimal fields containing all the known examples) a cell decomposition theorem follows from methods going back to Denef’s paper [7]. We derive from it the existence of definable Skolem functions and strongp-minimality. Then we turn to stronglyp-minimal fields satisfying the Extreme Value Property—a property which in particular holds in fields which are elementarily equivalent to ap-adic one. For such fieldsK, we prove that every definable subset ofK×Kdwhose fibers overKare inverse images by the valuation of subsets of the value group is semialgebraic. Combining the two we get a preparation theorem for definable functions onp-optimal fields satisfying the Extreme Value Property, from which it follows that infinite sets definable over such fields are in definable bijection iff they have the same dimension.



2003 ◽  
Vol 2003 (21) ◽  
pp. 1331-1340 ◽  
Author(s):  
Fumie Nakaoka ◽  
Nobuyuki Oda

Some fundamental properties of maximal open sets are obtained, such as decomposition theorem for a maximal open set. Basic properties of intersections of maximal open sets are established, such as the law of radical closure.





1982 ◽  
Vol 34 (1) ◽  
pp. 23-30
Author(s):  
S. K. Berberian

Factor-correspondences are nothing more than a way of describing isomorphisms between principal ideals in a regular ring. However, due to a remarkable decomposition theorem of M. J. Wonenburger [7, Lemma 1], they have proved to be a highly effective tool in the study of completeness properties in matrix rings over regular rings [7, Theorem 1]. Factor-correspondences also figure in the proof of D. Handelman's theorem that an ℵ0-continuous regular ring is unitregular [4, Theorem 3.2].The aim of the present article is to sharpen the main result in [7] and to re-examine its applications to matrix rings. The basic properties of factor-correspondences are reviewed briefly for the reader's convenience.Throughout, R denotes a regular ring (with unity).Definition 1 (cf. [5, p. 209ff], [7, p. 212]). A right factor-correspondence in R is a right R-isomorphism φ : J → K, where J and K are principal right ideals of R (left factor-correspondences are defined dually).



Author(s):  
V. I. Arnold ◽  
S. M. Gusein-Zade ◽  
A. N. Varchenko




1981 ◽  
Vol 81 ◽  
pp. 73-78
Author(s):  
Takasi Sugatani

Let B be a B-ring with a nonarchimedean valuation | |, i.e., B is an integral domain satisfying the following conditions: (i) B is bounded (| a | ≤ 1 for every a ∊ B), (ii) the boundary forms a multiplicative group.





Sign in / Sign up

Export Citation Format

Share Document