Factor-Correspondences in Regular Rings

1982 ◽  
Vol 34 (1) ◽  
pp. 23-30
Author(s):  
S. K. Berberian

Factor-correspondences are nothing more than a way of describing isomorphisms between principal ideals in a regular ring. However, due to a remarkable decomposition theorem of M. J. Wonenburger [7, Lemma 1], they have proved to be a highly effective tool in the study of completeness properties in matrix rings over regular rings [7, Theorem 1]. Factor-correspondences also figure in the proof of D. Handelman's theorem that an ℵ0-continuous regular ring is unitregular [4, Theorem 3.2].The aim of the present article is to sharpen the main result in [7] and to re-examine its applications to matrix rings. The basic properties of factor-correspondences are reviewed briefly for the reader's convenience.Throughout, R denotes a regular ring (with unity).Definition 1 (cf. [5, p. 209ff], [7, p. 212]). A right factor-correspondence in R is a right R-isomorphism φ : J → K, where J and K are principal right ideals of R (left factor-correspondences are defined dually).

2019 ◽  
Vol 18 (02) ◽  
pp. 1950021
Author(s):  
Tugce Pekacar Calci ◽  
Huanyin Chen

In this paper, we introduce a new notion which lies properly between strong [Formula: see text]-regularity and pseudopolarity. A ring [Formula: see text] is feckly polar if for any [Formula: see text] there exists [Formula: see text] such that [Formula: see text] Many structure theorems are proved. Further, we investigate feck polarity for triangular matrix and matrix rings. The relations among strongly [Formula: see text]-regular rings, pseudopolar rings and feckly polar rings are also obtained.


2003 ◽  
Vol 2003 (21) ◽  
pp. 1331-1340 ◽  
Author(s):  
Fumie Nakaoka ◽  
Nobuyuki Oda

Some fundamental properties of maximal open sets are obtained, such as decomposition theorem for a maximal open set. Basic properties of intersections of maximal open sets are established, such as the law of radical closure.


Author(s):  
V.P. Shchedryk ◽  

The book is devoted to investigation of arithmetic of the matrix rings over certain classes of commutative finitely generated principal ideals do- mains. We mainly concentrate on constructing of the matrix factorization theory. We reveal a close relationship between the matrix factorization and specific properties of subgroups of the complete linear group and the special normal form of matrices with respect to unilateral equivalence. The properties of matrices over rings of stable range 1.5 are thoroughly studied. The book is intended for experts in the ring theory and linear algebra, senior and post-graduate students.


Author(s):  
Zoran Petrovic ◽  
Maja Roslavcev

Let R be a commutative von Neumann regular ring. We show that every finitely generated ideal I in the ring of polynomials R[X] has a strong Gr?bner basis. We prove this result using only the defining property of a von Neumann regular ring.


1986 ◽  
Vol 38 (3) ◽  
pp. 633-658 ◽  
Author(s):  
K. R. Goodearl ◽  
D. E. Handelman

We study direct limits of finite products of matrix algebras (i.e., locally matricial algebras), their ordered Grothendieck groups (K0), and their tensor products. Given a dimension group G, a general problem is to determine whether G arises as K0 of a unit-regular ring or even as K0 of a locally matricial algebra. If G is countable, this is well known to be true. Here we provide positive answers in case (a) the cardinality of G is ℵ1, or (b) G is an arbitrary infinite tensor product of the groups considered in (a), or (c) G is the group of all continuous real-valued functions on an arbitrary compact Hausdorff space. In cases (a) and (b), we show that G in fact appears as K0 of a locally matricial algebra. Result (a) is the basis for an example due to de la Harpe and Skandalis of the failure of a determinantal property in a non-separable AF C*-algebra [18, Section 3].


1985 ◽  
Vol 37 (6) ◽  
pp. 1134-1148
Author(s):  
David Handelman

In this paper, we are primarily concerned with the behaviour of the centre with respect to the completion process for von Neumann regular rings at the pseudo-metric topology induced by a pseudo-rank function.Let R be a (von Neumann) regular ring, and N a pseudo-rank function (all terms left undefined here may be found in [6]). Then N induces a pseudo-metric topology on R, and the completion of R at this pseudo-metric, , is a right and left self-injective regular ring. Let Z( ) denote the centre of whatever ring is in the brackets. We are interested in the map .If R is simple, Z(R) is a field, so is discrete in the topology; yet Goodearl has constructed an example with Z(R) = R and Z(R) = C [5, 2.10]. There is thus no hope of a general density result.


1974 ◽  
Vol 17 (2) ◽  
pp. 283-284 ◽  
Author(s):  
Kwangil Koh

Recently, in the Research Problems of Canadian Mathematical Bulletin, Vol. 14, No. 4, 1971, there appeared a problem which asks “Is a prime Von Neumann regular ring pimitive?” While we are not able to settle this question one way or the other, we prove that in a Von Neumann regular ring, there is a maximal annihilator right ideal if and only if there is a minimal right ideal.


1971 ◽  
Vol 23 (2) ◽  
pp. 197-201 ◽  
Author(s):  
Howard E. Gorman

In [1], we discussed completions of differentially finitely generated modules over a differential ring R. It was necessary that the topology of the module be induced by a differential ideal of R and it was natural that this ideal be contained in J(R), the Jacobson radical of R. The ideal to be chosen, called Jd(R), was the intersection of those ideals which are maximal among the differential ideals of R. The question as to when Jd(R) ⊆ J(R) led to the definition of a class of rings called radically regular rings. These rings do satisfy the inclusion, and we showed in [1, Theorem 2] that R could always be “extended”, via localization, to a radically regular ring in such a way as to preserve all its differential prime ideals.In the present paper, we discuss the stability of radical regularity under quotient maps, localization, adjunction of a differential indeterminate, and integral extensions.


1979 ◽  
Vol 44 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Steven Garavaglia

This paper is mainly concerned with describing complete theories of modules by decomposing them (up to elementary equivalence) into direct products of simpler modules. In §1, I give a decomposition theorem which works for arbitrary direct product theories T. Given such a T, I define T-indecomposable structures and show that every model of T is elementarily equivalent to a direct product of T-indecomposable models of T. In §2, I show that if R is a commutative ring then every R-module is elementarily equivalent to ΠMM where M ranges over the maximal ideals of R and M is the localization of at M. This is applied to prove that if R is a commutative von Neumann regular ring and TR is the theory of R-modules then the TR-indecomposables are precisely the cyclic modules of the form R/M where M is a maximal ideal. In §3, I use the decomposition established in §2 to characterize the ω1-categorical and ω-stable modules over a countable commutative von Neumann regular ring and the superstable modules over a commutative von Neumann regular ring of arbitrary cardinality. In the process, I also prove several general characterizations of ω-stable and superstable modules; e.g., if R is any countable ring, then an R-moduIe is ω-stable if and only if every R-module elementarily equivalent to it is equationally compact.


2013 ◽  
Vol 88 (3) ◽  
pp. 499-505 ◽  
Author(s):  
JIANLONG CHEN ◽  
JIAN CUI

AbstractA $\ast $-ring $R$ is called (strongly) $\ast $-clean if every element of $R$ is the sum of a unit and a projection (that commute). Vaš [‘$\ast $-Clean rings; some clean and almost clean Baer $\ast $-rings and von Neumann algebras’, J. Algebra 324(12) (2010), 3388–3400] asked whether there exists a $\ast $-ring that is clean but not $\ast $-clean and whether a unit regular and $\ast $-regular ring is strongly $\ast $-clean. In this paper, we answer these two questions. We also give some characterisations related to $\ast $-regular rings.


Sign in / Sign up

Export Citation Format

Share Document