definable functions
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 0)

PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Antonio Jiménez-Pastor ◽  
Veronika Pillwein
Keyword(s):  

2021 ◽  
Vol 27 (2) ◽  
pp. 219-220
Author(s):  
Patrick Lutz

AbstractMartin’s conjecture is an attempt to classify the behavior of all definable functions on the Turing degrees under strong set theoretic hypotheses. Very roughly it says that every such function is either eventually constant, eventually equal to the identity function or eventually equal to a transfinite iterate of the Turing jump. It is typically divided into two parts: the first part states that every function is either eventually constant or eventually above the identity function and the second part states that every function which is above the identity is eventually equal to a transfinite iterate of the jump. If true, it would provide an explanation for the unique role of the Turing jump in computability theory and rule out many types of constructions on the Turing degrees.In this thesis, we will introduce a few tools which we use to prove several cases of Martin’s conjecture. It turns out that both these tools and these results on Martin’s conjecture have some interesting consequences both for Martin’s conjecture and for a few related topics.The main tool that we introduce is a basis theorem for perfect sets, improving a theorem due to Groszek and Slaman. We also introduce a general framework for proving certain special cases of Martin’s conjecture which unifies a few pre-existing proofs. We will use these tools to prove three main results about Martin’s conjecture: that it holds for regressive functions on the hyperarithmetic degrees (answering a question of Slaman and Steel), that part 1 holds for order preserving functions on the Turing degrees, and that part 1 holds for a class of functions that we introduce, called measure preserving functions.This last result has several interesting consequences for the study of Martin’s conjecture. In particular, it shows that part 1 of Martin’s conjecture is equivalent to a statement about the Rudin-Keisler order on ultrafilters on the Turing degrees. This suggests several possible strategies for working on part 1 of Martin’s conjecture, which we will discuss.The basis theorem that we use to prove these results also has some applications outside of Martin’s conjecture. We will use it to prove a few theorems related to Sacks’ question about whether it is provable in $\mathsf {ZFC}$ that every locally countable partial order of size continuum embeds into the Turing degrees. We will show that in a certain extension of $\mathsf {ZF}$ (which is incompatible with $\mathsf {ZFC}$ ), this holds for all partial orders of height two, but not for all partial orders of height three. Our proof also yields an analogous result for Borel partial orders and Borel embeddings in $\mathsf {ZF}$ , which shows that the Borel version of Sacks’ question has a negative answer.We will end the thesis with a list of open questions related to Martin’s conjecture, which we hope will stimulate further research.Abstract prepared by Patrick Lutz.E-mail: [email protected]


Author(s):  
Gareth Jones ◽  
Shi Qiu

We give two variations on a result of Wilkie’s [A. J. Wilkie, Complex continuations of [Formula: see text]-definable unary functions with a diophantine application, J. Lond. Math. Soc. (2) 93(3) (2016) 547–566] on unary functions definable in [Formula: see text] that take integer values at positive integers. Provided that the function grows slower (in a suitable sense) than the function [Formula: see text], Wilkie showed that it must be eventually equal to a polynomial. Assuming a stronger growth condition, but only assuming that the function takes values sufficiently close to integers at positive integers, we show that the function must eventually be close to a polynomial. In a different variation we show that it suffices to assume that the function takes integer values on a sufficiently dense subset of the positive integers (for instance the primes), again under a stronger growth bound than that in Wilkie’s result.


2020 ◽  
Vol 236 (2) ◽  
pp. 651-683
Author(s):  
Pablo Cubides Kovacsics ◽  
Françoise Delon

2020 ◽  
Vol 20 (03) ◽  
pp. 2050014
Author(s):  
Luck Darnière ◽  
Marcus Tressl

Let [Formula: see text] be an expansion of either an ordered field [Formula: see text], or a valued field [Formula: see text]. Given a definable set [Formula: see text] let [Formula: see text] be the ring of continuous definable functions from [Formula: see text] to [Formula: see text]. Under very mild assumptions on the geometry of [Formula: see text] and on the structure [Formula: see text], in particular when [Formula: see text] is [Formula: see text]-minimal or [Formula: see text]-minimal, or an expansion of a local field, we prove that the ring of integers [Formula: see text] is interpretable in [Formula: see text]. If [Formula: see text] is [Formula: see text]-minimal and [Formula: see text] is definably connected of pure dimension [Formula: see text], then [Formula: see text] defines the subring [Formula: see text]. If [Formula: see text] is [Formula: see text]-minimal and [Formula: see text] has no isolated points, then there is a discrete ring [Formula: see text] contained in [Formula: see text] and naturally isomorphic to [Formula: see text], such that the ring of functions [Formula: see text] which take values in [Formula: see text] is definable in [Formula: see text].


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 934
Author(s):  
Krzysztof Jan Nowak

We are concerned with rigid analytic geometry in the general setting of Henselian fields K with separated analytic structure, whose theory was developed by Cluckers–Lipshitz–Robinson. It unifies earlier work and approaches of numerous mathematicians. Separated analytic structures admit reasonable relative quantifier elimination in a suitable analytic language. However, the rings of global analytic functions with two kinds of variables seem not to have good algebraic properties such as Noetherianity or excellence. Therefore, the usual global resolution of singularities from rigid analytic geometry is no longer at our disposal. Our main purpose is to give a definable version of the canonical desingularization algorithm (the hypersurface case) due to Bierstone–Milman so that both of these powerful tools are available in the realm of non-Archimedean analytic geometry at the same time. It will be carried out within a category of definable, strong analytic manifolds and maps, which is more flexible than that of affinoid varieties and maps. Strong analytic objects are those definable ones that remain analytic over all fields elementarily equivalent to K. This condition may be regarded as a kind of symmetry imposed on ordinary analytic objects. The strong analytic category makes it possible to apply a model-theoretic compactness argument in the absence of the ordinary topological compactness. On the other hand, our closedness theorem enables application of resolution of singularities to topological problems involving the topology induced by valuation. Eventually, these three results will be applied to such issues as the existence of definable retractions or extending continuous definable functions. The established results remain valid for strictly convergent analytic structures, whose classical examples are complete, rank one valued fields with the Tate algebras of strictly convergent power series. The earlier techniques and approaches to the purely topological versions of those issues cannot be carried over to the definable settings because, among others, non-Archimedean geometry over non-locally compact fields suffers from lack of definable Skolem functions.


Sign in / Sign up

Export Citation Format

Share Document