On the k-Theory of the Classifying Space of the Infinite Symmetric Group

1987 ◽  
Vol 109 (5) ◽  
pp. 875 ◽  
Author(s):  
Friedrich Hegenbarth
Author(s):  
Francis Clarke

Let G be a simply connected, semi-simple, compact Lie group, let K* denote Z/2-graded, representable K-theory, and K* the corresponding homology theory. The K-theory of G and of its classifying space BG are well known, (8),(1). In contrast with ordinary cohomology, K*(G) and K*(BG) are torsion-free and have simple multiplicative structures. If ΩG denotes the space of loops on G, it seems natural to conjecture that K*(ΩG) should have, in some sense, a more simple structure than H*(ΩG).


Author(s):  
BJÖRN SCHUSTER

For any fixed prime p and any non-negative integer n there is a 2(pn − 1)-periodic generalized cohomology theory K(n)*, the nth Morava K-theory. Let G be a finite group and BG its classifying space. For some time now it has been conjectured that K(n)*(BG) is concentrated in even dimensions. Standard transfer arguments show that a finite group enjoys this property whenever its p-Sylow subgroup does, so one is reduced to verifying the conjecture for p-groups. It is easy to see that it holds for abelian groups, and it has been proved for some non-abelian groups as well, namely groups of order p3 ([7]) and certain wreath products ([3], [2]). In this note we consider finite (non-abelian) 2-groups with maximal normal cyclic subgroup, i.e. dihedral, semidihedral, quasidihedral and generalized quaternion groups of order a power of two.


1987 ◽  
Vol 106 ◽  
pp. 143-162 ◽  
Author(s):  
Nobuaki Obata

The infinite symmetric group is the discrete group of all finite permutations of the set X of all natural numbers. Among discrete groups, it has distinctive features from the viewpoint of representation theory and harmonic analysis. First, it is one of the most typical ICC-groups as well as free groups and known to be a group of non-type I. Secondly, it is a locally finite group, namely, the inductive limit of usual symmetric groups . Furthermore it is contained in infinite dimensional classical groups GL(ξ), O(ξ) and U(ξ) and their representation theories are related each other.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950057 ◽  
Author(s):  
M. Izumi ◽  
T. Sogabe

We determine the group structure of the homotopy set whose target is the automorphism group of the Cuntz algebra [Formula: see text] for finite [Formula: see text] in terms of K-theory. We show that there is an example of a space for which the homotopy set is a noncommutative group, and hence, the classifying space of the automorphism group of the Cuntz algebra for finite [Formula: see text] is not an H-space. We also make an improvement of Dadarlat’s classification of continuous fields of the Cuntz algebras in terms of vector bundles.


Sign in / Sign up

Export Citation Format

Share Document