Generalized Moment Functions and Orbit Spaces

1987 ◽  
Vol 109 (2) ◽  
pp. 229 ◽  
Author(s):  
Andrzej Bialynicki-Birula ◽  
Joanna Swiecicka
Author(s):  
Żywilla Fechner ◽  
Eszter Gselmann ◽  
László Székelyhidi

AbstractThe purpose of this paper is to prove that if on a commutative hypergroup an exponential monomial has the property that the linear subspace of all sine functions in its variety is one dimensional, then this exponential monomial is a linear combination of generalized moment functions.


2019 ◽  
Vol 10 (3) ◽  
pp. 215-220
Author(s):  
Kedumetse Vati ◽  
László Székelyhidi

Abstract Moment functions play a basic role in probability theory. A natural generalization can be defined on hypergroups which leads to the concept of generalized moment function sequences. In a former paper we studied some function classes on hypergroup joins which play a basic role in spectral synthesis. Moment functions are also important basic blocks of spectral synthesis. All these functions can be characterized by well-known functional equations. In this paper we describe generalized moment function sequences on hypergroup joins.


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Żywilla Fechner ◽  
Eszter Gselmann ◽  
László Székelyhidi

AbstractIn this paper generalized moment functions are considered. They are closely related to the well-known functions of binomial type which have been investigated on various abstract structures. The main purpose of this work is to prove characterization theorems for generalized moment functions on commutative groups. At the beginning a multivariate characterization of moment functions defined on a commutative group is given. Next the notion of generalized moment functions of higher rank is introduced and some basic properties on groups are listed. The characterization of exponential polynomials by means of complete (exponential) Bell polynomials is given. The main result is the description of generalized moment functions of higher rank defined on a commutative group as the product of an exponential and composition of multivariate Bell polynomial and an additive function. Furthermore, corollaries for generalized moment function of rank one are also stated. At the end of the paper some possible directions of further research are discussed.


Author(s):  
R. MUKUNDAN

Geometric moments have been used in several applications in the field of Computer Vision. Many techniques for fast computation of geometric moments have therefore been proposed in the recent past, but these algorithms mainly rely on properties of the moment integral such as piecewise differentiability and separability. This paper explores an alternative approach to approximating the moment kernel itself in order to get a notable improvement in computational speed. Using Schlick's approximation for the normalized kernel of geometric moments, the computational overhead could be significantly reduced and numerical stability increased. The paper also analyses the properties of the modified moment functions, and shows that the proposed method could be effectively used in all applications where normalized Cartesian moment kernels are used. Several experimental results showing the invariant characteristics of the modified moments are also presented.


1998 ◽  
Vol 109 (16) ◽  
pp. 6725-6735 ◽  
Author(s):  
M. Tamanis ◽  
M. Auzinsh ◽  
I. Klincare ◽  
O. Nikolayeva ◽  
R. Ferber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document