scholarly journals Common knowledge logic and game logic

1999 ◽  
Vol 64 (2) ◽  
pp. 685-700 ◽  
Author(s):  
Mamoru Kaneko

AbstractWe show the faithful embedding of common knowledge logic CKL into game logic GL, that is, CKL is embedded into GL and GL is a conservative extension of the fragment obtained by this embedding. Then many results in GL are available in CKL, and vice versa. For example, an epistemic consideration of Nash equilibrium for a game with pure strategies in GL is carried over to CKL. Another important application is to obtain a Gentzen-style sequent calculus formulation of CKL and its cut-elimination. The faithful embedding theorem is proved for the KD4–type propositional CKL and GL, but it holds for some variants of them.

2011 ◽  
Vol 52 ◽  
Author(s):  
Aurimas Paulius Girčys ◽  
Regimantas Pliuškevičius

It is known that one of main aims of specializations of derivations in nonclassical logics is the various tools which allow us to simplify the searching of termination of derivations. The traditional techniques used to ensure termination of derivations in various non-classical logics are based on loop-checking. In this paper the reflexive common knowledge logic based on modal logic K2 is considered. For considered logic a sequent calculus with specialized non-logical (loop-type) axioms is presented.  


Author(s):  
Steven J. Brams ◽  
Mehmet S. Ismail

AbstractIt is well known that Nash equilibria may not be Pareto-optimal; worse, a unique Nash equilibrium may be Pareto-dominated, as in Prisoners’ Dilemma. By contrast, we prove a previously conjectured result: every finite normal-form game of complete information and common knowledge has at least one Pareto-optimal nonmyopic equilibrium (NME) in pure strategies, which we define and illustrate. The outcome it gives, which depends on where play starts, may or may not coincide with that given by a Nash equilibrium. We use some simple examples to illustrate properties of NMEs—for instance, that NME outcomes are usually, though not always, maximin—and seem likely to foster cooperation in many games. Other approaches for analyzing farsighted strategic behavior in games are compared with the NME analysis.


2021 ◽  
pp. 268-311
Author(s):  
Paolo Mancosu ◽  
Sergio Galvan ◽  
Richard Zach

This chapter opens the part of the book that deals with ordinal proof theory. Here the systems of interest are not purely logical ones, but rather formalized versions of mathematical theories, and in particular the first-order version of classical arithmetic built on top of the sequent calculus. Classical arithmetic goes beyond pure logic in that it contains a number of specific axioms for, among other symbols, 0 and the successor function. In particular, it contains the rule of induction, which is the essential rule characterizing the natural numbers. Proving a cut-elimination theorem for this system is hopeless, but something analogous to the cut-elimination theorem can be obtained. Indeed, one can show that every proof of a sequent containing only atomic formulas can be transformed into a proof that only applies the cut rule to atomic formulas. Such proofs, which do not make use of the induction rule and which only concern sequents consisting of atomic formulas, are called simple. It is shown that simple proofs cannot be proofs of the empty sequent, i.e., of a contradiction. The process of transforming the original proof into a simple proof is quite involved and requires the successive elimination, among other things, of “complex” cuts and applications of the rules of induction. The chapter describes in some detail how this transformation works, working through a number of illustrative examples. However, the transformation on its own does not guarantee that the process will eventually terminate in a simple proof.


2019 ◽  
Vol 27 (4) ◽  
pp. 596-623
Author(s):  
Zhe Lin ◽  
Minghui Ma

Abstract Intuitionistic modal logics are extensions of intuitionistic propositional logic with modal axioms. We treat with two modal languages ${\mathscr{L}}_\Diamond $ and $\mathscr{L}_{\Diamond ,\Box }$ which extend the intuitionistic propositional language with $\Diamond $ and $\Diamond ,\Box $, respectively. Gentzen sequent calculi are established for several intuitionistic modal logics. In particular, we introduce a Gentzen sequent calculus for the well-known intuitionistic modal logic $\textsf{MIPC}$. These sequent calculi admit cut elimination and subformula property. They are decidable.


2019 ◽  
Vol 13 (4) ◽  
pp. 720-747
Author(s):  
SERGEY DROBYSHEVICH ◽  
HEINRICH WANSING

AbstractWe present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing (2010) and Odintsov & Wansing (2017), as well as the modal logic KN4 with strong implication introduced in Goble (2006). In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square - } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. For KN4 we provide both an FDE-style axiom system and a decidable sequent calculus for which a contraction elimination and a cut elimination result are shown.


2020 ◽  
Vol 30 (1) ◽  
pp. 281-294
Author(s):  
Vladimir N Krupski

Abstract The formal system of intuitionistic epistemic logic (IEL) was proposed by S. Artemov and T. Protopopescu. It provides the formal foundation for the study of knowledge from an intuitionistic point of view based on Brouwer–Heyting–Kolmogorov semantics of intuitionism. We construct a cut-free sequent calculus for IEL and establish that polynomial space is sufficient for the proof search in it. We prove that IEL is PSPACE-complete.


2019 ◽  
Vol 13 (4) ◽  
pp. 882-886
Author(s):  
ANDREAS FJELLSTAD

AbstractThis note shows that the permutation instructions presented by Zardini (2011) for eliminating cuts on universally quantified formulas in the sequent calculus for the noncontractive theory of truth IKTω are inadequate. To that purpose the note presents a derivation in the sequent calculus for IKTω ending with an application of cut on a universally quantified formula which the permutation instructions cannot deal with. The counterexample is of the kind that leaves open the question whether cut can be shown to be eliminable in the sequent calculus for IKTω with an alternative strategy.


1996 ◽  
Vol 12 (1) ◽  
pp. 67-88 ◽  
Author(s):  
Hans Jørgen Jacobsen

The most important analytical tool in non-cooperative game theory is the concept of a Nash equilibrium, which is a collection of possibly mixed strategies, one for each player, with the property that each player's strategy is a best reply to the strategies of the other players. If we do not go into normative game theory, which concerns itself with the recommendation of strategies, and focus instead entirely on the positive theory of prediction, two alternative interpretations of the Nash equilibrium concept are predominantly available.In the more traditional one, a Nash equilibrium is a prediction of actual play. A game may not have a Nash equilibrium in pure strategies, and a mixed strategy equilibrium may be difficult to incorporate into this interpretation if it involves the idea of actual randomization over equally good pure strategies. In another interpretation originating from Harsanyi (1973a), see also Rubinstein (1991), and Aumann and Brandenburger (1991), a Nash equilibrium is a ‘consistent’ collection of probabilistic expectations, conjectures, on the players. It is consistent in the sense that for each player each pure strategy, which has positive probability according to the conjecture about that player, is indeed a best reply to the conjectures about others.


Sign in / Sign up

Export Citation Format

Share Document