The consistency of arithmetic

2021 ◽  
pp. 268-311
Author(s):  
Paolo Mancosu ◽  
Sergio Galvan ◽  
Richard Zach

This chapter opens the part of the book that deals with ordinal proof theory. Here the systems of interest are not purely logical ones, but rather formalized versions of mathematical theories, and in particular the first-order version of classical arithmetic built on top of the sequent calculus. Classical arithmetic goes beyond pure logic in that it contains a number of specific axioms for, among other symbols, 0 and the successor function. In particular, it contains the rule of induction, which is the essential rule characterizing the natural numbers. Proving a cut-elimination theorem for this system is hopeless, but something analogous to the cut-elimination theorem can be obtained. Indeed, one can show that every proof of a sequent containing only atomic formulas can be transformed into a proof that only applies the cut rule to atomic formulas. Such proofs, which do not make use of the induction rule and which only concern sequents consisting of atomic formulas, are called simple. It is shown that simple proofs cannot be proofs of the empty sequent, i.e., of a contradiction. The process of transforming the original proof into a simple proof is quite involved and requires the successive elimination, among other things, of “complex” cuts and applications of the rules of induction. The chapter describes in some detail how this transformation works, working through a number of illustrative examples. However, the transformation on its own does not guarantee that the process will eventually terminate in a simple proof.

1984 ◽  
Vol 49 (1) ◽  
pp. 192-203 ◽  
Author(s):  
Nicolas D. Goodman

Questions about the constructive or effective character of particular arguments arise in several areas of classical mathematics, such as in the theory of recursive functions and in numerical analysis. Some philosophers have advocated Lewis's S4 as the proper logic in which to formalize such epistemic notions. (The fundamental work on this is Hintikka [4].) Recently there have been studies of mathematical theories formalized with S4 as the underlying logic so that these epistemic notions can be expressed. (See Shapiro [7], Myhill [5], and Goodman [2]. The motivation for this work is discussed in Goodman [3].) The present paper is a contribution to the study of the simplest of these theories, namely first-order arithmetic as formalized in S4. Following Shapiro, we call this theory epistemic arithmetic (EA). More specifically, we show that EA is a conservative extension of Hey ting's arithmetic HA (ordinary first-order intuitionistic arithmetic). The question of whether EA is conservative over HA was raised but left open in Shapiro [7].The idea of our proof is as follows. We interpret EA in an infinitary propositional S4, pretty much as Tait, for example, interprets classical arithmetic in his infinitary classical propositional calculus in [8]. We then prove a cut-elimination theorem for this infinitary propositional S4. A suitable version of the cut-elimination theorem can be formalized in HA. For cut-free infinitary proofs, there is a reflection principle provable in HA. That is, we can prove in HA that if there is a cut-free proof of the interpretation of a sentence ϕ then ϕ is true. Combining these results shows that if the interpretation of ϕ is provable in EA, then ϕ is provable in HA.


1994 ◽  
Vol 59 (4) ◽  
pp. 1263-1273 ◽  
Author(s):  
Mitio Takano

Fitting, in [1] and [2], investigated two families of many-valued modal logics. The first, which is somewhat familiar in the literature, is that of the logics characterized using a many-valued version of the Kripke model (binary modal model in his terminology) with a two-valued accessibility relation. On the other hand, those logics which are characterized using another many-valued version of the Kripke model (implicational modal model), with a many-valued accessibility relation, form the second family. Although he gave a sequent calculus for each of these logics, it is far from having the cut-elimination property (CEP) or the subformula property. So we will give a substitute for his system enjoying the subformula property, though it is not of ordinary sequent calculus but of the many-valued version of sequent calculus initiated by Takahashi [7] and Rousseau [3].The author, unaware of the deduction systems with CEP, had given in [8] and [9], after Rousseau [4], the deduction systems for the intuitionistic many-valued logics which enjoy CEP only for a certain restricted class of proofs. Then in [10], he gave for three-valued modal logics the ones with CEP, but these systems have a rule of inference which is unnecessary if the Cut rule is present. Why are we particular about CEP? The author's answer is that a cut-free proof is easy to examine since it is composed solely of subformulas of the formulas which form its conclusion. In this direction, the author has given, for modal logics with the Brouwerian axiom [11], the ones without CEP which nevertheless enjoy the subformula property. This paper is a sequel to the study in [11].


2010 ◽  
Vol 51 ◽  
Author(s):  
Jūratė Sakalauskaitė

We consider propositional discrete linear time temporal logic with future and past operators of time. For each formula ϕ of this logic, we present Gentzen-type sequent calculus Gr(ϕ) with a restricted cut rule. We sketch a proof of the soundness and the completeness of the sequent calculi presented. The completeness is proved via construction of a canonical model.


2012 ◽  
Vol 77 (2) ◽  
pp. 656-668
Author(s):  
Samuel R. Buss

AbstractWe present sharpened lower bounds on the size of cut free proofs for first-order logic. Prior lower bounds for eliminating cuts from a proof established superexponential lower bounds as a stack of exponentials, with the height of the stack proportional to the maximum depthdof the formulas in the original proof. Our results remove the constant of proportionality, giving an exponential stack of height equal tod−O(1). The proof method is based on more efficiently expressing the Gentzen–Solovay cut formulas as low depth formulas.


2012 ◽  
Vol 5 (2) ◽  
pp. 212-238 ◽  
Author(s):  
RAJEEV GORÉ ◽  
REVANTHA RAMANAYAKE

Valentini (1983) has presented a proof of cut-elimination for provability logic GL for a sequent calculus using sequents built from sets as opposed to multisets, thus avoiding an explicit contraction rule. From a formal point of view, it is more syntactic and satisfying to explicitly identify the applications of the contraction rule that are ‘hidden’ in proofs of cut-elimination for such sequent calculi. There is often an underlying assumption that the move to a proof of cut-elimination for sequents built from multisets is straightforward. Recently, however, it has been claimed that Valentini’s arguments to eliminate cut do not terminate when applied to a multiset formulation of the calculus with an explicit rule of contraction. The claim has led to much confusion and various authors have sought new proofs of cut-elimination for GL in a multiset setting.Here we refute this claim by placing Valentini’s arguments in a formal setting and proving cut-elimination for sequents built from multisets. The use of sequents built from multisets enables us to accurately account for the interplay between the weakening and contraction rules. Furthermore, Valentini’s original proof relies on a novel induction parameter called “width” which is computed ‘globally’. It is difficult to verify the correctness of his induction argument based on “width.” In our formulation however, verification of the induction argument is straightforward. Finally, the multiset setting also introduces a new complication in the case of contractions above cut when the cut-formula is boxed. We deal with this using a new transformation based on Valentini’s original arguments.Finally, we discuss the possibility of adapting this cut-elimination procedure to other logics axiomatizable by formulae of a syntactically similar form to the GL axiom.


2018 ◽  
Vol 24 (3) ◽  
pp. 291-305 ◽  
Author(s):  
TOR SANDQVIST

AbstractThe article approaches cut elimination from a new angle. On the basis of an arbitrary inference relation among logically atomic formulae, an inference relation on a language possessing logical operators is defined by means of inductive clauses similar to the operator-introducing rules of a cut-free intuitionistic sequent calculus. The logical terminology of the richer language is not uniquely specified, but assumed to satisfy certain conditions of a general nature, allowing for, but not requiring, the existence of infinite conjunctions and disjunctions. We investigate to what extent structural properties of the given atomic relation are preserved through the extension to the full language. While closure under the Cut rule narrowly construed is not in general thus preserved, two properties jointly amounting to closure under the ordinary structural rules, including Cut, are.Attention is then narrowed down to the special case of a standard first-order language, where a similar result is obtained also for closure under substitution of terms for individual parameters. Taken together, the three preservation results imply the familiar cut-elimination theorem for pure first-order intuitionistic sequent calculus.In the interest of conceptual economy, all deducibility relations are specified purely inductively, rather than in terms of the existence of formal proofs of any kind.


Author(s):  
Amy Felty ◽  
Carlos Olarte ◽  
Bruno Xavier

Abstract Linear logic (LL) has been used as a foundation (and inspiration) for the development of programming languages, logical frameworks, and models for concurrency. LL’s cut-elimination and the completeness of focusing are two of its fundamental properties that have been exploited in such applications. This paper formalizes the proof of cut-elimination for focused LL. For that, we propose a set of five cut-rules that allows us to prove cut-elimination directly on the focused system. We also encode the inference rules of other logics as LL theories and formalize the necessary conditions for those logics to have cut-elimination. We then obtain, for free, cut-elimination for first-order classical, intuitionistic, and variants of LL. We also use the LL metatheory to formalize the relative completeness of natural deduction and sequent calculus in first-order minimal logic. Hence, we propose a framework that can be used to formalize fundamental properties of logical systems specified as LL theories.


Sign in / Sign up

Export Citation Format

Share Document