Filters, Cohen sets and consistent extensions of the Erdős-Dushnik-Miller Theorem

2000 ◽  
Vol 65 (1) ◽  
pp. 259-271 ◽  
Author(s):  
Saharon Shelah ◽  
Lee J. Stanley

AbstractWe present two different types of models where, for certain singular cardinals λ of uncountable cofinality, λ → (λ, ω + 1)2, although λ is not a strong limit cardinal, We announce, here, and will present in a subsequent paper, [7], that, for example, consistently, and consistently, .


1977 ◽  
Vol 42 (2) ◽  
pp. 272-276 ◽  
Author(s):  
Menachem Magidor

In [2] Galvin and Hajnal showed, as a corollary to a more general result, that if , is a strong limit cardinal, then . They established similar bounds for powers of singular cardinals of cofinality greater than ω. Jech and Prikry in [3] showed that the Galvin-Hajnal bound can be improved if we assume that ω1 carries an ω2 saturated ω1 complete, nontrivial ideal. (See [7] for definitions), namely: under the given assumption provided is a strong limit cardinal.In this paper we show that the same conclusion can be derived from Chang's Conjecture (see below) which is, at least consistencywise, a weaker assumption than the existence of an ω2 saturated ideal on ω1. We do not know if assumptions like these are necessary for obtaining the result.Our notations and terminology should be understood by any reader acquainted with set theory. Chang's Conjecture is the following model theoretic assumption introduced by C. C. Chang:which is deciphered as follows: Every structure 〈A, R,…〉 in a countable type where ∣A∣ = ω2, R ⊆ A, ∣R∣ = ω1 has an elementary substructure: 〈A′,R′,…〉 where ∣A′∣ = ω1 and ∣R′∣ = ω0. The consistency of Chang's Conjecture modulo the existence of Ramsey cardinals is claimed in [5].



2020 ◽  
pp. 1-34
Author(s):  
Alejandro Poveda ◽  
Assaf Rinot ◽  
Dima Sinapova

Abstract We introduce a class of notions of forcing which we call $\Sigma $ -Prikry, and show that many of the known Prikry-type notions of forcing that centers around singular cardinals of countable cofinality are $\Sigma $ -Prikry. We show that given a $\Sigma $ -Prikry poset $\mathbb P$ and a name for a non-reflecting stationary set T, there exists a corresponding $\Sigma $ -Prikry poset that projects to $\mathbb P$ and kills the stationarity of T. Then, in a sequel to this paper, we develop an iteration scheme for $\Sigma $ -Prikry posets. Putting the two works together, we obtain a proof of the following. Theorem. If $\kappa $ is the limit of a countable increasing sequence of supercompact cardinals, then there exists a forcing extension in which $\kappa $ remains a strong limit cardinal, every finite collection of stationary subsets of $\kappa ^+$ reflects simultaneously, and $2^\kappa =\kappa ^{++}$ .



2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.



2011 ◽  
Vol 76 (2) ◽  
pp. 477-490 ◽  
Author(s):  
Sy-David Friedman ◽  
Ajdin Halilović

AbstractAssuming the existence of a weakly compact hypermeasurable cardinal we prove that in some forcing extension ℵω is a strong limit cardinal and ℵω+2 has the tree property. This improves a result of Matthew Foreman (see [2]).



1980 ◽  
Vol 45 (1) ◽  
pp. 56-66 ◽  
Author(s):  
Saharon Shelah
Keyword(s):  

AbstractSilver and subsequently Galvin and Hajnal, got bounds on , for ℵα strong limit cardinal of cofinality > ℵ0. We somewhat improve those results.



1995 ◽  
Vol 60 (2) ◽  
pp. 415-430
Author(s):  
Greg Bishop

AbstractLet κ and λ be infinite cardinals, a filter on κ and a set of functions from κ to κ. The filter is generated by if consists of those subsets of κ which contain the range of some element of . The set is <λ-closed if it is closed in the <λ-topology on κκ. (In general, the <λ-topology on IA has basic open sets all such that, for all i ∈ I, Ui ⊆ A and ∣{i ∈ I: Ui ≠ A} ∣<λ.) The primary question considered in this paper asks “Is there a uniform ultrafilter on κ which is generated by a closed set of functions?” (Closed means <ω-closed.) We also establish the independence of two related questions. One is due to Carlson: “Does there exist a regular cardinal κ and a subtree T of <κκ such that the set of branches of T generates a uniform ultrafilter on κ?”; and the other is due to Pouzet: “For all regular cardinals κ, is it true that no uniform ultrafilter on κ is it true that no uniform ultrafilter on κ analytic?”We show that if κ is a singular, strong limit cardinal, then there is a uniform ultrafilter on κ which is generated by a closed set of increasing functions. Also, from the consistency of an almost huge cardinal, we get the consistency of CH + “There is a uniform ultrafilter on ℵ1 which is generated by a closed set of increasing functions”. In contrast with the above results, we show that if Κ is any cardinal, λ is a regular cardinal less than or equal to κ and ℙ is the forcing notion for adding at least (κ<λ)+ generic subsets of λ, then in VP, no uniform ultrafilter on κ is generated by a closed set of functions.



2004 ◽  
Vol 69 (1) ◽  
pp. 255-264
Author(s):  
Mirna Džamonja ◽  
Péter Komjáth ◽  
Charles Morgan

AbstractWe prove consistent, assuming there is a supercompact cardinal, that there is a singular strong limit cardinal μ, of cofinality ω, such that every μ+-chromatic graph X on μ+ has an edge colouring c of X into μ colours for which every vertex colouring g of X into at most μ many colours has a g-colour class on which c takes every value.The paper also contains some generalisations of the above statement in which μ+ is replaced by other cardinals > μ.



1978 ◽  
Vol 43 (3) ◽  
pp. 535-549 ◽  
Author(s):  
Ruggero Ferro

Chang, in [1], proves an interpolation theorem (Theorem I, remark b)) for a first-order language. The proof of Chang's theorem uses essentially nonsimple devices, like special and ω1-saturated models.In remark e) in [1], Chang asks if there is a simpler proof of his Theorem I.In [1], Chang proves also another interpolation theorem (Theorem II), which is not an extension of his Theorem I, but extends Craig's interpolation theorem to Lα+,ω languages with interpolant in Lα+,α where α is a strong limit cardinal of cofinality ω.In remark k) in [1], Chang asks if there is a generalization of both Theorems I and II in [1], or at least a generalization of both Theorem I in [1] and Lopez-Escobar's interpolation theorem in [7].Maehara and Takeuti, in [8], show that there is a completely different proof of Chang's interpolation Theorem I as a consequence of their interpolation theorems. The proofs of these theorems of Maehara and Takeuti are proof theoretical in character, involving the notion of cut-free natural deduction, and it uses devices as simple as those needed for the usual Craig's interpolation theorem. Hence this can be considered as a positive answer to Chang's question in remark e) in [1].



1997 ◽  
Vol 62 (3) ◽  
pp. 999-1020 ◽  
Author(s):  
Juha Oikkonen
Keyword(s):  

AbstractWe prove that the class of trees with no branches of cardinality ≤ κ is not RPC definable in L∞κ when κ is regular. Earlier such a result was known for under the assumption κ<κ = κ. Our main result is actually proved in a stronger form which covers also L∞κ (and makes sense there) for every strong limit cardinal λ < κ of cofinality κ.



Sign in / Sign up

Export Citation Format

Share Document