A note on the isomorphism problem for SK[G]

2001 ◽  
Vol 66 (3) ◽  
pp. 1117-1120
Author(s):  
Zoé Chatzidakis ◽  
Peter Pappas

Let G be an infinite abelian p-group and let K be a field of characteristic ≠ p. Let K[G] be the set of all sums Σg∈Gagg where the ag are in K, and all but finitely many ag are 0. Then K[G] is a K-algebra, with multiplication induced by the group multiplication on G.If G is countable, then the isomorphism type of K[G] has been completely described by S. D. Berman [1]. If G is a direct sum of countable groups, one can also describe K[G], as K[⊕iGi] ≃ ⊗iK[Gi]. If K contains all pn-th roots of unity, then K[G] is isomorphic to the ring of continuous functions from a Boolean space X to the field K with the discrete topology. In that case, the group UK[G] of invertible elements of K[G] is isomorphic to the direct sum of ∣G∣ copies of K×. More generally, if K is of the second kind with respect to p (see below for the definition), the group UK[G] has a simple description.Consider the subgroup SK[G] of elements Σgagg which have order a power of p and such that Σg ag = 1. This group is of course much simpler than UK[G]. Classifying SK[G] up to isomorphism reduces to the case where G has no element of infinite height, see [7]. If G is a direct sum of cyclic groups then the isomorphism type of SK[G] has been completely determined, in [2, 3, 7, 8]. The aim of this note is to show that a similar result is in general not possible for uncountable G. We use an invariant Γ associated to abelian groups, and for any regular uncountable cardinal κ, exhibit 2κ groups G for which Γ(G) = Γ(SK[G]) are pairwise distinct. Our work is based on a construction of Shelah [9], who constructed 2κ non-isomorphic abelian p-groups of cardinality κ for κ an uncountable regular cardinal.


1981 ◽  
Vol 46 (3) ◽  
pp. 617-624 ◽  
Author(s):  
Charlotte Lin

The study of effectiveness in classical mathematics is rapidly expanding, through recent research in algebra, topology, model theory, and functional analysis. Well-known contributors are Barwise (Wisconsin), Crossley (Monash), Dekker (Rutgers), Ershoff (Novosibirsk), Feferman (Stanford), Harrington (Berkeley), Mal′cev (Novosibirsk), Morley (Cornell), Nerode (Cornell), Rabin (Hebrew University), Shore (Cornell). Further interesting work is due to Kalantari (University of California, Santa Barbara), Metakides (Rochester), Millar (Wisconsin), Remmel (University of California, San Diego), Nurtazin (Novosibirsk). Areas investigated include enumerated algebras, models of complete theories, vector spaces, fields, orderings, Hilbert spaces, and boolean algebras.We investigate the effective content of the structure theory of p-groups. Recall that a p-group is a torsion abelian group in which the (finite) order of each element is some power of a fixed prime p. (In the sequel, “group” = “additively written abelian group”.)The structure theory of p-groups is based on the two elementary notions of order and height. Recall that the order of x is the least integer n such that nx = 0. The height of x is the number of times p divides x, that is, the least n such that x = pny for some y in the group but x ≠ pn+1y for any y. If for each n ∈ ω there is a “pnth-root” yn, so that x = pnyn, then we say that x has infinite height. In 1923, Prüfer related the two notions as criteria for direct sum decomposition, provingTheorem. Every group of bounded order is a direct sum of cyclic groups, andTheorem. Every countable primary group with no (nonzero) elements of infinite height is a direct sum of cyclic groups.





Order ◽  
2021 ◽  
Author(s):  
Péter Vrana

AbstractGiven a commutative semiring with a compatible preorder satisfying a version of the Archimedean property, the asymptotic spectrum, as introduced by Strassen (J. reine angew. Math. 1988), is an essentially unique compact Hausdorff space together with a map from the semiring to the ring of continuous functions. Strassen’s theorem characterizes an asymptotic relaxation of the preorder that asymptotically compares large powers of the elements up to a subexponential factor as the pointwise partial order of the corresponding functions, realizing the asymptotic spectrum as the space of monotone semiring homomorphisms to the nonnegative real numbers. Such preordered semirings have found applications in complexity theory and information theory. We prove a generalization of this theorem to preordered semirings that satisfy a weaker polynomial growth condition. This weaker hypothesis does not ensure in itself that nonnegative real-valued monotone homomorphisms characterize the (appropriate modification of the) asymptotic preorder. We find a sufficient condition as well as an equivalent condition for this to hold. Under these conditions the asymptotic spectrum is a locally compact Hausdorff space satisfying a similar universal property as in Strassen’s work.



2017 ◽  
Vol 153 (8) ◽  
pp. 1706-1746
Author(s):  
Michael Groechenig

A result of André Weil allows one to describe rank $n$ vector bundles on a smooth complete algebraic curve up to isomorphism via a double quotient of the set $\text{GL}_{n}(\mathbb{A})$ of regular matrices over the ring of adèles (over algebraically closed fields, this result is also known to extend to $G$-torsors for a reductive algebraic group $G$). In the present paper we develop analogous adelic descriptions for vector and principal bundles on arbitrary Noetherian schemes, by proving an adelic descent theorem for perfect complexes. We show that for Beilinson’s co-simplicial ring of adèles $\mathbb{A}_{X}^{\bullet }$, we have an equivalence $\mathsf{Perf}(X)\simeq |\mathsf{Perf}(\mathbb{A}_{X}^{\bullet })|$ between perfect complexes on $X$ and cartesian perfect complexes for $\mathbb{A}_{X}^{\bullet }$. Using the Tannakian formalism for symmetric monoidal $\infty$-categories, we conclude that a Noetherian scheme can be reconstructed from the co-simplicial ring of adèles. We view this statement as a scheme-theoretic analogue of Gelfand–Naimark’s reconstruction theorem for locally compact topological spaces from their ring of continuous functions. Several results for categories of perfect complexes over (a strong form of) flasque sheaves of algebras are established, which might be of independent interest.



2006 ◽  
Vol 13 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Tariel Kemoklidze

Abstract A cotorsion hull of the separable 𝑝-group 𝑇 is considered when 𝑇 is a direct sum of torsion-complete groups. It is proved that in the considered case its cotorsion hull is fully transitive if and only if 𝑇 is a direct sum of cyclic groups or is a torsion-complete group.



1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.



1990 ◽  
Vol 33 (1) ◽  
pp. 11-17 ◽  
Author(s):  
K. Benabdallah ◽  
C. Piché

AbstractThe class of primary abelian groups whose subsocles are purifiable is not yet completely characterized and it contains the class of direct sums of cyclic groups and torsion complete groups. In sharp constrast with this, the class of groups whose p2-bounded subgroups are purifiable consist only of those groups which are the direct sum of a bounded and a divisible group. Various tools are developed and a short application to the pure envelopes of cyclic subgroups is given in the last section.





Sign in / Sign up

Export Citation Format

Share Document