scholarly journals Late Quaternary Mammalian Biogeography and Environments of the Great Plains and Prairies. Russell W. Graham, Holmes A. SemkenJr. , and Mary Ann Graham, editors. Scientific Papers Vol. XXII. Illinois State Museum, Springfield, 1987. xiv + 491 pp., appendix, index. $21.00 (paper).

1989 ◽  
Vol 54 (3) ◽  
pp. 661-661
Author(s):  
Gary Haynes
Geology ◽  
2007 ◽  
Vol 35 (2) ◽  
pp. 159 ◽  
Author(s):  
Lee Nordt ◽  
Joseph von Fischer ◽  
Larry Tieszen

2020 ◽  
Vol 132 (11-12) ◽  
pp. 2553-2571
Author(s):  
Anthony L. Layzell ◽  
Rolfe D. Mandel

Abstract A systematic study of floodplains, terraces, and alluvial fans in the Republican River valley of south-central Nebraska provided a well-dated, detailed reconstruction of late Quaternary landscape evolution and resolved outstanding issues related to previously proposed Holocene terrace sequences. Stable carbon isotope (δ13C) values determined on soil organic matter from buried soils in alluvial landforms were used to reconstruct the structure of vegetation communities and provided a means to investigate the relationships between bioclimatic change and fluvial activity for the period of record. Our study serves as a model for geomorphological and geoarcheological investigations in stream valleys throughout the central Great Plains and wherever loess-derived late Quaternary alluvial fans occur, in particular. Holocene alluvial landforms in the river valley include a broad floodplain complex (T-0a, T-0b, and T-0c), a single alluvial terrace (T-1), and alluvial fans that mostly grade to the T-1 (AF-1) and T-0c (AF-0c) surfaces. Remnants of a late Pleistocene terrace (T-2), mantled by Holocene (Bignell) loess, are also preserved, and some Holocene alluvial fans (AF-2) grade to T-2 surfaces. Radiocarbon ages suggest that the T-1 fill and AF-1 fans aggraded between ca. 9000–1000 yr B.P. Hence, nearly all of the Holocene alluvium in the river valley is stored in these landforms. Sedimentation, however, was interrupted by several periods of landscape stability and soil formation. Radiocarbon ages from the upper A horizons of buried soils in the T-1 and AF-1 fills, indicating approximate burial ages, cluster at ca. 6500, 4500, 3500, and 1000 yr B.P. Also, based on the radiocarbon ages, the T-0c fill and AF-0c fans were aggrading between ca. 2000–900 yr B.P. Given that the T-0c fill and upper parts of the T-1 fill were both aggrading after ca. 2000 yr B.P., we suggest that the T-1 surface was abandoned between ca. 4500–3500 yr B.P., but subsequent aggradation of both the T-1 and T-0c fills occurred due to large-magnitude flood events during the late Holocene. The δ13C data indicate a shift from ∼40% C4 biomass at ca. 6000 to ∼85% at ca. 4500 yr B.P. We propose a scenario where (1) a reduction in C3 vegetation after 6000 yr B.P. destabilized the uplands, resulting in an increase in sediment supply and aggradation of the T-1 fill and AF-1 fans, and (2) the establishment of C4 vegetation by ca. 4500 yr B.P. stabilized the uplands, resulting in a reduction in sediment supply and subsequent incision and abandonment of the T-1 and most AF-1 surfaces. The proposed timing and nature of landscape and bioclimatic change are consistent with regional records from the central Great Plains.


Sign in / Sign up

Export Citation Format

Share Document