A COMPARISON OF LATE QUATERNARY C4 PLANT PRODUCTIVITY USING BURIED SOIL DATA FROM THE GREAT PLAINS, USA: IMPLICATIONS FOR ARCHAEOLOGICAL RESEARCH

2018 ◽  
Author(s):  
Laura R. Murphy ◽  
Geology ◽  
2007 ◽  
Vol 35 (2) ◽  
pp. 159 ◽  
Author(s):  
Lee Nordt ◽  
Joseph von Fischer ◽  
Larry Tieszen

2020 ◽  
Vol 132 (11-12) ◽  
pp. 2553-2571
Author(s):  
Anthony L. Layzell ◽  
Rolfe D. Mandel

Abstract A systematic study of floodplains, terraces, and alluvial fans in the Republican River valley of south-central Nebraska provided a well-dated, detailed reconstruction of late Quaternary landscape evolution and resolved outstanding issues related to previously proposed Holocene terrace sequences. Stable carbon isotope (δ13C) values determined on soil organic matter from buried soils in alluvial landforms were used to reconstruct the structure of vegetation communities and provided a means to investigate the relationships between bioclimatic change and fluvial activity for the period of record. Our study serves as a model for geomorphological and geoarcheological investigations in stream valleys throughout the central Great Plains and wherever loess-derived late Quaternary alluvial fans occur, in particular. Holocene alluvial landforms in the river valley include a broad floodplain complex (T-0a, T-0b, and T-0c), a single alluvial terrace (T-1), and alluvial fans that mostly grade to the T-1 (AF-1) and T-0c (AF-0c) surfaces. Remnants of a late Pleistocene terrace (T-2), mantled by Holocene (Bignell) loess, are also preserved, and some Holocene alluvial fans (AF-2) grade to T-2 surfaces. Radiocarbon ages suggest that the T-1 fill and AF-1 fans aggraded between ca. 9000–1000 yr B.P. Hence, nearly all of the Holocene alluvium in the river valley is stored in these landforms. Sedimentation, however, was interrupted by several periods of landscape stability and soil formation. Radiocarbon ages from the upper A horizons of buried soils in the T-1 and AF-1 fills, indicating approximate burial ages, cluster at ca. 6500, 4500, 3500, and 1000 yr B.P. Also, based on the radiocarbon ages, the T-0c fill and AF-0c fans were aggrading between ca. 2000–900 yr B.P. Given that the T-0c fill and upper parts of the T-1 fill were both aggrading after ca. 2000 yr B.P., we suggest that the T-1 surface was abandoned between ca. 4500–3500 yr B.P., but subsequent aggradation of both the T-1 and T-0c fills occurred due to large-magnitude flood events during the late Holocene. The δ13C data indicate a shift from ∼40% C4 biomass at ca. 6000 to ∼85% at ca. 4500 yr B.P. We propose a scenario where (1) a reduction in C3 vegetation after 6000 yr B.P. destabilized the uplands, resulting in an increase in sediment supply and aggradation of the T-1 fill and AF-1 fans, and (2) the establishment of C4 vegetation by ca. 4500 yr B.P. stabilized the uplands, resulting in a reduction in sediment supply and subsequent incision and abandonment of the T-1 and most AF-1 surfaces. The proposed timing and nature of landscape and bioclimatic change are consistent with regional records from the central Great Plains.


1994 ◽  
Vol 41 (3) ◽  
pp. 298-305 ◽  
Author(s):  
Alan F. Arbogast ◽  
William C. Johnson

AbstractFour late-Quaternary alluvial fills and terraces are recognized in Wolf Creek basin, a small (163 km2) drainage in the Kansas River system of the central Great Plains. Two terraces were created during the late Pleistocene: the T-4 is a fill-top terrace underlain by sand and gravel fill (Fill I), and the T-3 is a strath terrace cut on the Cretaceous Dakota Sandstone. Both Fill II (early Holocene) and Fill III (late Holocene) are exposed beneath the T-2, a Holocene fill-top terrace. The T-1 complex, consisting of one cut and three fill-top terraces, is underlain by Fills III and IV. A poorly developed floodplain (T-0) has formed within the past 1000 yr. As valleys in Wolf Creek basin filled during the early Holocene, an interval of soil formation occurred about 6800 yr B.P. Early Holocene fill has been found only in the basin's upper reaches, indicating that extensive erosion during the middle Holocene removed most early-Holocene fill from the middle and lower reaches of the basin. Valley filling between 5000 and 1000 yr B.P. was interrupted by soil formation about 1800, 1500, and 1200 yr B.P. As much as 6 m of entrenchment has occurred in the past 1000 yr. Holocene events in Wolf Creek basin correlate well with those in other localities in the central Great Plains, indicating that widespread changes in climate, along with adjustments driven by complex response, influenced fluvial activity.


Sign in / Sign up

Export Citation Format

Share Document