Extremal processes and record value times

1973 ◽  
Vol 10 (4) ◽  
pp. 864-868 ◽  
Author(s):  
Sidney I. Resnick

Let {Xn, n ≧ 1} be i.i.d. and Yn = max {X1,…, Xn}. Xj is a record value of {Xn} if Yj > Yj–1 The record value times are Ln, n ≧ 1 and inter-record times are Δn, n ≧ 1. The known limiting behavior of {Ln} and {Δn} is close to that of a non-homogeneous Poisson process and an explanation of this is obtained by embedding {Yn} in a suitable extremal process which jumps according to a non-homogeneous Poisson process.

1973 ◽  
Vol 10 (04) ◽  
pp. 864-868 ◽  
Author(s):  
Sidney I. Resnick

Let {Xn , n ≧ 1} be i.i.d. and Yn = max {X 1,…, Xn }. Xj is a record value of {Xn } if Yj > Yj– 1 The record value times are Ln, n ≧ 1 and inter-record times are Δ n , n ≧ 1. The known limiting behavior of {Ln } and {Δn } is close to that of a non-homogeneous Poisson process and an explanation of this is obtained by embedding {Yn } in a suitable extremal process which jumps according to a non-homogeneous Poisson process.


1978 ◽  
Vol 15 (3) ◽  
pp. 552-559 ◽  
Author(s):  
Donald P. Gaver ◽  
Patricia A. Jacobs

A study is made of the extremal process generated by i.i.d. random variables appearing at the events of a non-homogeneous Poisson process, 𝒫. If 𝒫 has an exponentially increasing rate function, then records eventually occur in a homogeneous Poisson process. The size of the latest record has a classical extreme value distribution.


1978 ◽  
Vol 15 (03) ◽  
pp. 552-559 ◽  
Author(s):  
Donald P. Gaver ◽  
Patricia A. Jacobs

A study is made of the extremal process generated by i.i.d. random variables appearing at the events of a non-homogeneous Poisson process, 𝒫. If 𝒫 has an exponentially increasing rate function, then records eventually occur in a homogeneous Poisson process. The size of the latest record has a classical extreme value distribution.


1995 ◽  
Vol 32 (03) ◽  
pp. 707-726 ◽  
Author(s):  
Patrick Homble ◽  
William P. McCormick

Shot noise processes form an important class of stochastic processes modeling phenomena which occur as shocks to a system and with effects that diminish over time. In this paper we present extreme value results for two cases — a homogeneous Poisson process of shocks and a non-homogeneous Poisson process with periodic intensity function. Shocks occur with a random amplitude having either a gamma or Weibull density and dissipate via a compactly supported impulse response function. This work continues work of Hsing and Teugels (1989) and Doney and O'Brien (1991) to the case of random amplitudes.


1982 ◽  
Vol 19 (4) ◽  
pp. 803-814 ◽  
Author(s):  
Mitsushi Tamari

The decision-maker drives a car along a straight highway towards his destination and looks for a parking place. When he finds a parking place, he can either park there and walk the distance to his destination or continue driving. Parking places are assumed to occur in accordance with a Poisson process along the highway. The decision-maker does not know the distance Y to his destination exactly in advance. Only an a priori distribution is assumed for Y and cases of typically important distribution are examined. When we take as loss the distance the decision-maker must walk and wish to minimize the expected loss, the optimal stopping rule and the minimum expected loss are obtained. In Section 3 a generalization to the cases of a non-homogeneous Poisson process and a renewal process is considered.


Sign in / Sign up

Export Citation Format

Share Document