Some extensions of Takács's limit theorems

1974 ◽  
Vol 11 (4) ◽  
pp. 752-761 ◽  
Author(s):  
D. N. Shanbhag

In this paper, we establish that if an interarrival time exceeds a service time with a positive probability then the queueing system GI/G/s with a finite waiting room always has proper limiting distributions for its characteristics such as queue length, waiting time and the remaining service times of the customers being served. The result remains valid if we consider a GI/G/s system with bounded waiting times. A technique is also given to establish that for a system with Poisson arrivals the limiting distributions of the queueing characteristics at an epoch of arrival and at an arbitrary epoch are identical.

1974 ◽  
Vol 11 (04) ◽  
pp. 752-761
Author(s):  
D. N. Shanbhag

In this paper, we establish that if an interarrival time exceeds a service time with a positive probability then the queueing system GI/G/s with a finite waiting room always has proper limiting distributions for its characteristics such as queue length, waiting time and the remaining service times of the customers being served. The result remains valid if we consider a GI/G/s system with bounded waiting times. A technique is also given to establish that for a system with Poisson arrivals the limiting distributions of the queueing characteristics at an epoch of arrival and at an arbitrary epoch are identical.


1971 ◽  
Vol 3 (2) ◽  
pp. 249-268 ◽  
Author(s):  
E. Kyprianou

Investigations in the theory of heavy traffic were initiated by Kingman ([5], [6] and [7]) in an effort to obtain approximations for stable queues. He considered the Markov chains {Wni} of a sequence {Qi} of stable GI/G/1 queues, where Wni is the waiting time of the nth customer in the ith queueing system, and by making use of Spitzer's identity obtained limit theorems as first n → ∞ and then ρi ↑ 1 as i → ∞. Here &rHi is the traffic intensity of the ith queueing system. After Kingman the theory of heavy traffic was developed by a number of Russians mainly. Prohorov [10] considered the double sequence of waiting times {Wni} and obtained limit theorems in the three cases when n1/2(ρi-1) approaches (i) - ∞, (ii) -δ and (iii) 0 as n → ∞ and i → ∞ simultaneously. The case (i) includes the result of Kingman. Viskov [12] also studied the double sequence {Wni} and obtained limits in the two cases when n1/2(ρi − 1) approaches + δ and + ∞ as n → ∞ and i → ∞ simultaneously.


1994 ◽  
Vol 26 (01) ◽  
pp. 242-257
Author(s):  
Władysław Szczotka ◽  
Krzysztof Topolski

Consider the GI/G/1 queueing system with traffic intensity 1 and let wk and lk denote the actual waiting time of the kth unit and the number of units present in the system at the kth arrival including the kth unit, respectively. Furthermore let τ denote the number of units served during the first busy period and μ the intensity of the service. It is shown that as k →∞, where a is some known constant, , , and are independent, is a Brownian meander and is a Wiener process. A similar result is also given for the difference of virtual waiting time and queue length processes. These results are also extended to a wider class of queueing systems than GI/G/1 queues and a scheme of series of queues.


1994 ◽  
Vol 26 (1) ◽  
pp. 242-257
Author(s):  
Władysław Szczotka ◽  
Krzysztof Topolski

Consider the GI/G/1 queueing system with traffic intensity 1 and let wk and lk denote the actual waiting time of the kth unit and the number of units present in the system at the kth arrival including the kth unit, respectively. Furthermore let τ denote the number of units served during the first busy period and μ the intensity of the service. It is shown that as k →∞, where a is some known constant, , , and are independent, is a Brownian meander and is a Wiener process. A similar result is also given for the difference of virtual waiting time and queue length processes. These results are also extended to a wider class of queueing systems than GI/G/1 queues and a scheme of series of queues.


1971 ◽  
Vol 3 (02) ◽  
pp. 249-268 ◽  
Author(s):  
E. Kyprianou

Investigations in the theory of heavy traffic were initiated by Kingman ([5], [6] and [7]) in an effort to obtain approximations for stable queues. He considered the Markov chains {W n i } of a sequence {Q i } of stable GI/G/1 queues, where W n i is the waiting time of the nth customer in the ith queueing system, and by making use of Spitzer's identity obtained limit theorems as first n → ∞ and then ρ i ↑ 1 as i → ∞. Here &rH i is the traffic intensity of the ith queueing system. After Kingman the theory of heavy traffic was developed by a number of Russians mainly. Prohorov [10] considered the double sequence of waiting times {W n i } and obtained limit theorems in the three cases when n 1/2(ρ i -1) approaches (i) - ∞, (ii) -δ and (iii) 0 as n → ∞ and i → ∞ simultaneously. The case (i) includes the result of Kingman. Viskov [12] also studied the double sequence {W n i } and obtained limits in the two cases when n 1/2(ρ i − 1) approaches + δ and + ∞ as n → ∞ and i → ∞ simultaneously.


1973 ◽  
Vol 5 (01) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


1972 ◽  
Vol 9 (3) ◽  
pp. 650-658 ◽  
Author(s):  
Ward Whitt

The stable GI/G/s queue (ρ < 1) is sometimes studied using the “fact” that epochs just prior to an arrival when all servers are idle constitute an embedded persistent renewal process. This is true for the GI/G/1 queue, but a simple GI/G/2 example is given here with all interarrival time and service time moments finite and ρ < 1 in which, not only does the system fail to be empty ever with some positive probability, but it is never empty. Sufficient conditions are then given to rule out such examples. Implications of embedded persistent renewal processes in the GI/G/1 and GI/G/s queues are discussed. For example, functional limit theorems for time-average or cumulative processes associated with a large class of GI/G/s queues in light traffic are implied.


1981 ◽  
Vol 18 (03) ◽  
pp. 707-714 ◽  
Author(s):  
Shun-Chen Niu

Using a definition of partial ordering of distribution functions, it is proven that for a tandem queueing system with many stations in series, where each station can have either one server with an arbitrary service distribution or a number of constant servers in parallel, the expected total waiting time in system of every customer decreases as the interarrival and service distributions becomes smaller with respect to that ordering. Some stronger conclusions are also given under stronger order relations. Using these results, bounds for the expected total waiting time in system are then readily obtained for wide classes of tandem queues.


1989 ◽  
Vol 21 (02) ◽  
pp. 485-487 ◽  
Author(s):  
G. I. Falin

An analytic approach to the diffusion approximation in queueing due to Burman (1979) is applied to the M(t)/G/1/∞ queueing system with periodic Poisson arrivals. We show that under heavy traffic the virtual waiting time process can be approximated by a certain Wiener process with reflecting barrier at 0.


Sign in / Sign up

Export Citation Format

Share Document