Polynomial bounds for probability generating functions

1975 ◽  
Vol 12 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Henry Braun

The problem of approximating an arbitrary probability generating function (p.g.f.) by a polynomial is considered. It is shown that if the coefficients rj are chosen so that LN(·) agrees with g(·) to k derivatives at s = 1 and to (N – k) derivatives at s = 0, then LN is in fact an upper or lower bound to g; the nature of the bound depends only on k and not on N. Application of the results to the problems of finding bounds for extinction probabilities, extinction time distributions and moments of branching process distributions are examined.

1975 ◽  
Vol 12 (03) ◽  
pp. 507-514 ◽  
Author(s):  
Henry Braun

The problem of approximating an arbitrary probability generating function (p.g.f.) by a polynomial is considered. It is shown that if the coefficients rj are chosen so that LN (·) agrees with g(·) to k derivatives at s = 1 and to (N – k) derivatives at s = 0, then LN is in fact an upper or lower bound to g; the nature of the bound depends only on k and not on N. Application of the results to the problems of finding bounds for extinction probabilities, extinction time distributions and moments of branching process distributions are examined.


1974 ◽  
Vol 6 (2) ◽  
pp. 322-335 ◽  
Author(s):  
Alan Agresti

The class of fractional linear generating functions, one of the few known classes of probability generating functions whose iterates can be explicitly stated, is examined. The method of bounding a probability generating function g (satisfying g″(1) < ∞) by two fractional linear generating functions is used to derive bounds for the extinction time distribution of the Galton-Watson branching process with offspring probability distribution represented by g. For the special case of the Poisson probability generating function, the best possible bounding fractional linear generating functions are obtained, and the bounds for the expected time to extinction of the corresponding Poisson branching process are better than any previously published.


1974 ◽  
Vol 6 (02) ◽  
pp. 322-335 ◽  
Author(s):  
Alan Agresti

The class of fractional linear generating functions, one of the few known classes of probability generating functions whose iterates can be explicitly stated, is examined. The method of bounding a probability generating function g (satisfying g″(1) &lt; ∞) by two fractional linear generating functions is used to derive bounds for the extinction time distribution of the Galton-Watson branching process with offspring probability distribution represented by g. For the special case of the Poisson probability generating function, the best possible bounding fractional linear generating functions are obtained, and the bounds for the expected time to extinction of the corresponding Poisson branching process are better than any previously published.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2108
Author(s):  
Weaam Alhadlaq ◽  
Abdulhamid Alzaid

Archimedean copulas form a very wide subclass of symmetric copulas. Most of the popular copulas are members of the Archimedean copulas. These copulas are obtained using real functions known as Archimedean generators. In this paper, we observe that under certain conditions the cumulative distribution functions on (0, 1) and probability generating functions can be used as Archimedean generators. It is shown that most of the well-known Archimedean copulas can be generated using such distributions. Further, we introduced new Archimedean copulas.


1979 ◽  
Vol 16 (2) ◽  
pp. 449-453 ◽  
Author(s):  
Tea-Yuan Hwang ◽  
Nae-Sheng Wang

Under weak conditions, this paper provides a best lower and a best upper bounding fractional linear generating function for any probability generating function when they have the same mean. These bounds can be used to obtain bounds for the expectation and the percentiles of the extinction-time distribution of a Galton-Watson branching process and other parameters of interest. For the special case of the four points probability generating function, the best bounds obtained are better than the bounds derived by Agresti (1974).


1979 ◽  
Vol 16 (02) ◽  
pp. 449-453 ◽  
Author(s):  
Tea-Yuan Hwang ◽  
Nae-Sheng Wang

Under weak conditions, this paper provides a best lower and a best upper bounding fractional linear generating function for any probability generating function when they have the same mean. These bounds can be used to obtain bounds for the expectation and the percentiles of the extinction-time distribution of a Galton-Watson branching process and other parameters of interest. For the special case of the four points probability generating function, the best bounds obtained are better than the bounds derived by Agresti (1974).


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 868
Author(s):  
Khrystyna Prysyazhnyk ◽  
Iryna Bazylevych ◽  
Ludmila Mitkova ◽  
Iryna Ivanochko

The homogeneous branching process with migration and continuous time is considered. We investigated the distribution of the period-life τ, i.e., the length of the time interval between the moment when the process is initiated by a positive number of particles and the moment when there are no individuals in the population for the first time. The probability generating function of the random process, which describes the behavior of the process within the period-life, was obtained. The boundary theorem for the period-life of the subcritical or critical branching process with migration was found.


1971 ◽  
Vol 8 (3) ◽  
pp. 589-598 ◽  
Author(s):  
Krishna B. Athreya

The functional equation ϕ(mu) = h(ϕ(u)) where is a probability generating function with 1 < m = h'(1 –) < ∞ and where F(t) is a non-decreasing right continuous function with F(0 –) = 0, F(0 +) < 1 and F(+ ∞) = 1 arises in a Galton-Watson process in a natural way. We prove here that for any if and only if This unifies several results in the literature on the supercritical Galton-Watson process. We generalize this to an age dependent branching process case as well.


1971 ◽  
Vol 8 (03) ◽  
pp. 589-598 ◽  
Author(s):  
Krishna B. Athreya

The functional equation ϕ(mu) = h(ϕ(u)) where is a probability generating function with 1 &lt; m = h'(1 –) &lt; ∞ and where F(t) is a non-decreasing right continuous function with F(0 –) = 0, F(0 +) &lt; 1 and F(+ ∞) = 1 arises in a Galton-Watson process in a natural way. We prove here that for any if and only if This unifies several results in the literature on the supercritical Galton-Watson process. We generalize this to an age dependent branching process case as well.


1966 ◽  
Vol 3 (01) ◽  
pp. 261-267 ◽  
Author(s):  
C. R. Heathcote ◽  
E. Seneta

Summary If F(s) is the probability generating function of a non-negative random variable, the nth functional iterate Fn (s) = Fn– 1 (F(s)) generates the distribution of the size of the nth generation of a simple branching process. In general it is not possible to obtain explicit formulae for many quantities involving Fn (s), and this paper considers certain bounds and approximations. Bounds are found for the Koenigs-type iterates lim n→∞ m −n {1−Fn (s)}, 0 ≦ s ≦ 1 where m = F′ (1) &lt; 1 and F′′ (1) &lt; ∞; for the expected time to extinction and for the limiting conditional-distribution generating function limn→∞{Fn (s) − Fn (0)} [1 – Fn (0)]–1. Particular attention is paid to the case F(s) = exp {m(s − 1)}.


Sign in / Sign up

Export Citation Format

Share Document