On the probability that a random point is the jth nearest neighbour to its own kth nearest neighbour

1986 ◽  
Vol 23 (1) ◽  
pp. 221-226 ◽  
Author(s):  
Norbert Henze

In a homogeneous Poisson process in Rd, consider an arbitrary point X and let Y be its kth nearest neighbour. Denote by Rk the rank of X in the proximity order defined by Y, i.e., Rk = j if X is the jth nearest neighbour to Y. A representation for Rk in terms of a sum of independent random variables is obtained, and the limiting distribution of Rk, as k →∞, is shown to be normal. This result generalizes to mixtures of Poisson processes.

1986 ◽  
Vol 23 (01) ◽  
pp. 221-226 ◽  
Author(s):  
Norbert Henze

In a homogeneous Poisson process in R d , consider an arbitrary point X and let Y be its kth nearest neighbour. Denote by Rk the rank of X in the proximity order defined by Y, i.e., Rk = j if X is the jth nearest neighbour to Y. A representation for Rk in terms of a sum of independent random variables is obtained, and the limiting distribution of Rk, as k →∞, is shown to be normal. This result generalizes to mixtures of Poisson processes.


1969 ◽  
Vol 6 (02) ◽  
pp. 453-458 ◽  
Author(s):  
Mark Brown

In this paper we shall investigate point processes generated by random variables of the form 〈gi (Ti ]), i=± 1, ± 2, … 〉, where 〈Ti, i= ± 1, … 〉 is the set of arrival times from a (not necessarily homogeneous) Poisson process or mixture of Poisson processes, and 〈gi, i = ± 1, … 〉 is an independently and identically distributed (i.i.d.) or interchangeable sequence of random functions, independent of 〈Ti 〉.


1969 ◽  
Vol 6 (2) ◽  
pp. 453-458 ◽  
Author(s):  
Mark Brown

In this paper we shall investigate point processes generated by random variables of the form 〈gi(Ti]), i=± 1, ± 2, … 〉, where 〈Ti, i= ± 1, … 〉 is the set of arrival times from a (not necessarily homogeneous) Poisson process or mixture of Poisson processes, and 〈gi, i = ± 1, … 〉 is an independently and identically distributed (i.i.d.) or interchangeable sequence of random functions, independent of 〈Ti〉.


1989 ◽  
Vol 26 (01) ◽  
pp. 176-181
Author(s):  
Wen-Jang Huang

In this article we give some characterizations of Poisson processes, the model which we consider is inspired by Kimeldorf and Thall (1983) and we generalize the results of Chandramohan and Liang (1985). More precisely, we consider an arbitrarily delayed renewal process, at each arrival time we allow the number of arrivals to be i.i.d. random variables, also the mass of each unit atom can be split into k new atoms with the ith new atom assigned to the process Di, i = 1, ···, k. We shall show that the existence of a pair of uncorrelated processes Di, Dj, i ≠ j, implies the renewal process is Poisson. Some other related characterization results are also obtained.


Author(s):  
Asbjørn Christian Nordentoft

Abstract In this paper, we determine the limiting distribution of the image of the Eichler–Shimura map or equivalently the limiting joint distribution of the coefficients of the period polynomials associated to a fixed cusp form. The limiting distribution is shown to be the distribution of a certain transformation of two independent random variables both of which are equidistributed on the circle $\mathbb{R}/\mathbb{Z}$, where the transformation is connected to the additive twist of the cuspidal $L$-function. Furthermore, we determine the asymptotic behavior of the zeroes of the period polynomials of a fixed cusp form. We use the method of moments and the main ingredients in the proofs are additive twists of $L$-functions and bounds for both individual and sums of Kloosterman sums.


1969 ◽  
Vol 6 (02) ◽  
pp. 293-300
Author(s):  
Mark Brown

In [5] Renyi considers the following traffic model: Vehicles enter a highway at times 〈Ti , i = 1, 2, … 〉, forming a homogeneous Poisson process of intensity λ. The vehicle entering at time Ti will choose a velocity Vi and will travel at that constant velocity. The random variables 〈Vi , i = 1, 2, …〉 are independently and identically distributed (i.i.d.) and independent of 〈Ti 〉 with c.d.f. F satisfying All vehicles travel in the same direction.


1983 ◽  
Vol 20 (01) ◽  
pp. 202-208 ◽  
Author(s):  
George Kimeldorf ◽  
Peter F. Thall

It has been recently proved that if N, X 1, X 2, … are non-constant mutually independent random variables with X 1,X 2, … identically distributed and N non-negative and integer-valued, then the independence of and implies that X 1 is Bernoulli and N is Poisson. A well-known theorem in point process theory due to Fichtner characterizes a Poisson process in terms of a sum of independent thinnings. In the present article, simultaneous generalizations of both of these results are provided, including a joint characterization of the multinomial distribution and the Poisson process.


2003 ◽  
Vol 40 (03) ◽  
pp. 807-814 ◽  
Author(s):  
S. N. U. A. Kirmani ◽  
Jacek Wesołowski

The mean and the variance of the time S(t) spent by a system below a random threshold until t are obtained when the system level is modelled by the current value of a sequence of independent and identically distributed random variables appearing at the epochs of a nonhomogeneous Poisson process. In the case of the homogeneous Poisson process, the asymptotic distribution of S(t)/t as t → ∞ is derived.


1992 ◽  
Vol 112 (3) ◽  
pp. 613-629 ◽  
Author(s):  
Barbara Szyszkowicz

Let S(N(t)) be defined bywhere {N(t), t ≥ 0} is a Poisson process with intensity parameter 1/μ > 0 and {Xi i ≥ 1} is a family of independent random variables which are also independent of {N(t), t ≥ 0}.


Sign in / Sign up

Export Citation Format

Share Document