Boundary crossing for moving sums

1988 ◽  
Vol 25 (1) ◽  
pp. 81-88 ◽  
Author(s):  
J. Glaz ◽  
B. Johnson

Let Xi, i ≧ 1, be a sequence of independent N(0, 1) random variables and Sj,m = Xj + · ·· + Xj+m–1, the jth moving sum. Let τ m = inf{j ≧ 1 : Sj,m > a} + m – 1, the boundary crossing time. Approximation in the spirit of Glaz and Johnson (1984), (1986) and Samuel-Cahn (1983) are given for Pr(τm > n), E(τ m), and σ (τ m),the standard deviation of τm.

1988 ◽  
Vol 25 (01) ◽  
pp. 81-88 ◽  
Author(s):  
J. Glaz ◽  
B. Johnson

Let Xi, i ≧ 1, be a sequence of independent N(0, 1) random variables and Sj,m = Xj + · ·· + Xj+m –1 , the jth moving sum. Let τ m = inf{j ≧ 1 : Sj,m > a} + m – 1, the boundary crossing time. Approximation in the spirit of Glaz and Johnson (1984), (1986) and Samuel-Cahn (1983) are given for Pr(τ m > n), E(τ m ), and σ (τ m ),the standard deviation of τ m .


2001 ◽  
Vol 38 (01) ◽  
pp. 18-35 ◽  
Author(s):  
A. N. Startsev

A generalisation of the classical general stochastic epidemic within a closed, homogeneously mixing population is considered, in which the infectious periods of infectives follow i.i.d. random variables having an arbitrary but specified distribution. The asymptotic behaviour of the total size distribution for the epidemic as the initial numbers of susceptibles and infectives tend to infinity is investigated by generalising the construction of Sellke and reducing the problem to a boundary crossing problem for sums of independent random variables.


2007 ◽  
Vol 39 (02) ◽  
pp. 492-509 ◽  
Author(s):  
Claude Lefèvre

In this paper we consider the problem of first-crossing from above for a partial sums process m+S t , t ≥ 1, with the diagonal line when the random variables X t , t ≥ 1, are independent but satisfying nonstationary laws. Specifically, the distributions of all the X t s belong to a common parametric family of arithmetic distributions, and this family of laws is assumed to be stable by convolution. The key result is that the first-crossing time distribution and the associated ballot-type formula rely on an underlying polynomial structure, called the generalized Abel-Gontcharoff structure. In practice, this property advantageously provides simple and efficient recursions for the numerical evaluation of the probabilities of interest. Several applications are then presented, for constant and variable parameters.


Metrologiya ◽  
2020 ◽  
pp. 15-27
Author(s):  
Aleksandr V. Lapko ◽  
Vasiliy A. Lapko

When substantiating the method of fast selection of the bandwidth of kernel probability density estimates, a constant was found that is a functional of the second density derivative. In this paper, the obtained result is generalized to derivatives of symmetric probability densities of different orders. The functional dependences of the constants under study on the coeffi cient of antikurtosis of a random variable are established. The regularities peculiar to them are investigated. Based on the results obtained, a method for estimating functionals from derived probability densities has been developed, which involves the following actions. In the original sample estimated standard deviation of the one-dimensional random variables and the coeffi cient of antikurtosis. Using the reconstructed functional dependences on the antikurtosis coeffi cient, the constants are estimated, which are functionals of the derivatives of the probability density. With known estimates of the standard deviation of the investigated random variable and the considered constant, the values of the functional from the derivative of the probability density of the selected order are calculated. The obtained results are confi rmed by the analysis of the data of computational experiments. It is established that with increasing order of the derivative, the values of the estimates of the studied functionals increase. This fact is explained by the complication of the integrand function in the considered functionals. The proposed method provides objective results for the fi rst three derivatives of the probability density of a random variable. The obtained conclusions are confi rmed by the results of the confi dence estimation of the investigated functionals.


2021 ◽  
Author(s):  
Nefeli Moridis ◽  
W. John Lee ◽  
Wayne Sim ◽  
Thomas Blasingame

Abstract The objective of this work is to numerically estimate the fraction of Reserves assigned to each Reserves category of the PRMS matrix through a cumulative distribution function. We selected 38 wells from a Permian Basin dataset available to Texas A&M University. Previous work has shown that Swanson's Mean, which relates the Reserves categories through a cdf of a normal distribution, is an inaccurate method to determine the relationship of the Reserves categories with asymmetric distributions. Production data are lognormally distributed, regardless of basin type, thus cannot follow the SM concept. The Gaussian Quadrature (GQ) provides a methodology to accurately estimate the fraction of Reserves that lie in 1P, 2P, and 3P categories – known as the weights. Gaussian Quadrature is a numerical integration method that uses discrete random variables and a distribution that matches the original data. For this work, we associate the lognormal cumulative distribution function (CDF) with a set of discrete random variables that replace the production data, and determine the associated probabilities. The production data for both conventional and unconventional fields are lognormally distributed, thus we expect that this methodology can be implemented in any field. To do this, we performed probabilistic decline curve analysis (DCA) using Arps’ Hyperbolic model and Monte Carlo simulation to obtain the 1P, 2P, and 3P volumes, and calculated the relative weights of each Reserves category. We performed probabilistic rate transient analysis (RTA) using a commercial software to obtain the 1P, 2P, and 3P volumes, and calculated the relative weights of each Reserves category. We implemented the 3-, 5-, and 10-point GQ to obtain the weight and percentiles for each well. Once this was completed, we validated the GQ results by calculating the percent-difference between the probabilistic DCA, RTA, and GQ results. We increase the standard deviation to account for the uncertainty of Contingent and Prospective resources and implemented 3-, 5-, and 10-point GQ to obtain the weight and percentiles for each well. This allows us to also approximate the weights of these volumes to track them through the life of a given project. The probabilistic DCA, RTA and Reserves results indicate that the SM is an inaccurate method for estimating the relative weights of each Reserves category. The 1C, 2C, 3C, and 1U, 2U, and 3U Contingent and Prospective Resources, respectively, are distributed in a similar way but with greater variance, incorporated in the standard deviation. The results show that the GQ is able to capture an accurate representation of the Reserves weights through a lognormal CDF. Based on the proposed results, we believe that the GQ is accurate and can be used to approximate the relationship between the PRMS categories. This relationship will aid in booking Reserves to the SEC because it can be recreated for any field. These distributions of Reserves and resources other than Reserves (ROTR) are important for planning and for resource inventorying. The GQ provides a measure of confidence on the prediction of the Reserves weights because of the low percent difference between the probabilistic DCA, RTA, and GQ weights. This methodology can be implemented in both conventional and unconventional fields.


2007 ◽  
Vol 39 (2) ◽  
pp. 492-509 ◽  
Author(s):  
Claude Lefèvre

In this paper we consider the problem of first-crossing from above for a partial sums process m+St, t ≥ 1, with the diagonal line when the random variables Xt, t ≥ 1, are independent but satisfying nonstationary laws. Specifically, the distributions of all the Xts belong to a common parametric family of arithmetic distributions, and this family of laws is assumed to be stable by convolution. The key result is that the first-crossing time distribution and the associated ballot-type formula rely on an underlying polynomial structure, called the generalized Abel-Gontcharoff structure. In practice, this property advantageously provides simple and efficient recursions for the numerical evaluation of the probabilities of interest. Several applications are then presented, for constant and variable parameters.


2021 ◽  
Vol 58 (3) ◽  
pp. 609-620
Author(s):  
Marcello Galeotti ◽  
Giovanni Rabitti

AbstractMotivated by the problem of variance allocation for the sum of dependent random variables, Colini-Baldeschi, Scarsini and Vaccari (2018) recently introduced Shapley values for variance and standard deviation games. These Shapley values constitute a criterion satisfying nice properties useful for allocating the variance and the standard deviation of the sum of dependent random variables. However, since Shapley values are in general computationally demanding, Colini-Baldeschi, Scarsini and Vaccari also formulated a conjecture about the relation of the Shapley values of two games, which they proved for the case of two dependent random variables. In this work we prove that their conjecture holds true in the case of an arbitrary number of independent random variables but, at the same time, we provide counterexamples to the conjecture for the case of three dependent random variables.


Sign in / Sign up

Export Citation Format

Share Document