Effect of Temperature on Survival of the Free-Living Stages of Trichostrongylus colubriformis

1966 ◽  
Vol 52 (4) ◽  
pp. 713 ◽  
Author(s):  
Ferron L. Andersen ◽  
Guang-Tsan Wang ◽  
Norman D. Levine
1958 ◽  
Vol 36 (4) ◽  
pp. 623-628 ◽  
Author(s):  
Premvati

The optimum temperature for the complete development of the free-living and the infective larvae of Strongyloides fülleborni is 25 °C. Morphological changes are seen at higher or lower temperatures.


2012 ◽  
Vol 21 (4) ◽  
pp. 372-378 ◽  
Author(s):  
Raquel Abdallah da Rocha ◽  
Patrizia Ana Bricarello ◽  
Gilberto Pedroso da Rocha ◽  
Alessandro Francisco Talamini do Amarante

This experiment aimed to assess the recovery of infective larvae (L3) of Trichostrongylus colubriformis from Brachiaria decumbens cv. Australiana, Cynodon dactylon cv. Coast-cross and Panicum maximum cv. Aruana. The experimental module comprised six plots, with two plots per herbage species. Larval survival was assessed from autumn to winter, under the effect of two herbage-paring heights (5 and 30 cm). TThe paring was carried out immediately before contamination with faces containing T. colubriformis eggs. The feces and herbage were collected at one, two, four, eight, 12 and 16 weeks after feces had been deposited in the experimental plots. In general, larvae were recovered from both herbage and feces until the 16th week. The longer persistence of these larvae in the environment was probably due to warmer temperatures. The number of L3 recovered from the pasture was not influenced by the height of plants, except for Brachiaria and Aruana herbage in the fourth week. Regarding the concentrations of larvae per kg of dry matter (L3/kg DM), recovery was higher from low pasture in all three herbage species. During the autumn, the development and survival of the T. colubriformis free-living stages were not affected by the different herbage species.


2020 ◽  
Vol 12 ◽  
pp. 511-527
Author(s):  
C Lupo ◽  
BL Dutta ◽  
S Petton ◽  
P Ezanno ◽  
D Tourbiez ◽  
...  

Vibrio aestuarianus infection in oyster populations causes massive mortality, resulting in losses for oyster farmers. Such dynamics result from host-pathogen interactions and contagion through water-borne transmission. To assess the spatiotemporal spread of V. aestuarianus infection and associated oyster mortality at a bay scale, we built a mathematical model informed by experimental infection data at 2 temperatures and spatially dependent marine connectivity of oyster farms. We applied the model to a real system and tested the importance of each factor using a number of modelling scenarios. Results suggest that introducing V. aestuarianus in a fully susceptible adult oyster population in the bay would lead to the mortality of all farmed oysters over 6 to 12 mo, depending on the location in which infection was initiated. The effect of temperature was captured by the basic reproduction number (R0), which was >1 at high seawater temperatures, as opposed to values <1 at low temperatures. At the ecosystem scale, simulations showed the existence of long-distance dispersal of free-living bacteria. The western part of the bay could be reached by bacteria originating from the eastern side, though the spread time was greatly increased. Further developments of the model, including the consideration of the anthropogenic movements of oysters and oyster-specific sensitivity factors, would allow the development of accurate maps of epidemiological risks and help define aquaculture zoning.


Author(s):  
A. Merlin ◽  
N. Ravinet ◽  
C. Sévin ◽  
M. Bernez-Romand ◽  
S. Petry ◽  
...  

1978 ◽  
Vol 64 (6) ◽  
pp. 1024 ◽  
Author(s):  
Z. I. Khan ◽  
W. Dorsman

Parasitology ◽  
1968 ◽  
Vol 58 (3) ◽  
pp. 641-651 ◽  
Author(s):  
J. Barrett

The development of the free-living infective larvae of a homogonic strain Strongyloides ratti is described.The larvae develop only between 15 and 34 °C. Transfer experiments show the temperature block to be in the preparation for the second moult.Within the temperature range 15–34 °C, increasing the temperature speeds up the rate of development of all the larval stages equally, the Q10 for development being 2·5.The maximum percentage development occurs at 20 °C. The percentage development is highest in faeces–peat culture (95% development at 20 °C), whilst the percentage development in charcoal and vermiculite cultures is about the same (75% development at 20 °C.).Larvae grown on charcoal cultures are larger than those grown on vermiculite, which are larger than those grown on peat. No significant difference was found in the length:oesophagus and length:width ratios or in the variability of larvae grown at different temperatures or on different culture media.Different worm densities in the cultures of from 2000 to 10000 larvae per g of culture did not affect either the size of the infective larve or the percentage development.The optimum temperature for survival is 15 °C. Worms grown at 20 °C lived longer than worms grown at any other temperature. There was no evidence of temperature adaptation by the larvae.The infective larvae are positively thermotactic, and show maximum activity at 37 °C.I should like to thank my supervisor, Dr Tate, for his advice and encouragement. The work was carried out during the tenure of a Medical Research Council Scholarship.


2007 ◽  
Vol 102 (2) ◽  
pp. 315-319 ◽  
Author(s):  
Kenji Minato ◽  
Eisaku Kimura ◽  
Yoshimi Shintoku ◽  
Shoji Uga

Sign in / Sign up

Export Citation Format

Share Document