The Brain Research Bandwagon: Proceed with Caution

1978 ◽  
Vol 65 (3) ◽  
pp. 38-43
Author(s):  
Elda Franklin ◽  
A. David Franklin
Keyword(s):  
Author(s):  
Jason Tougaw

This chapter examines a small number of recent graphic brain narratives that experiment with novel methods of visualizing the brain—including David B.’s Epileptic, Ellen Forney’s Marbles, and Matteo Farinella and Hana Ros’s Neurocomic. Tougaw argues that these narratives both draw from and challenge cultural responses to high-profile neuroimaging techniques, including PET and fMRI. Graphic narratives are a subcultural genre celebrated for their rebellious aesthetics and emphasis on narratives that challenge mainstream social and political assumptions. Brain scanning technologies are highly specialized tools that have revolutionized brain research and gained considerable mainstream attention. The mainstreaming of these technologies oversimplifies the images they produce, creating a widely held sense that they offer direct access to the brains they visualize. By contrast, graphic narratives put heavy emphasis on the aesthetic process involved in their making of brain images. While careful not to minimize these differences, the chapter argues that key similarities between neurocomics and neuroimaging techniques can be a means for clarifying the roles played by the sciences and the humanities in the cultural laboratory of contemporary neuromania.


2021 ◽  
Author(s):  
Clement Cointe ◽  
Adrian Laborde ◽  
Lionel G Nowak ◽  
David Bourrier ◽  
Christian Bergaud ◽  
...  

Flexible deep brain probes have been the focus of many research works and aims at achieving better compliance with the surrounding brain tissue while maintaining minimal rejection. Strategies have been explored to find the best way to implant a flexible probe in the brain, while maintaining its flexibility once positioned in the cortex. Here, we present a novel and versatile scalable batch fabrication approach to deliver ultra-thin and flexible penetrating neural probe consisting of a silk-parylene bilayer. The biodegradable silk layer provides a temporary and programmable stiffener to ensure ease of insertion of the ultrathin parylene-based flexible devices. The innovative and yet robust batch fabrication technology allows complete design freedom of the neural probe in terms of materials, size, shape and thickness. These results provide a novel technological solution for implanting ultra-flexible and ultrathin devices, which possesses great potential for brain research.


Sign in / Sign up

Export Citation Format

Share Document