Erratum: Radiation Protection of in Vitro Mammalian Cells: Effects of Hydroxyl Radical Scavengers on the Slopes and Shoulders of Survival Curves

1991 ◽  
Vol 127 (2) ◽  
pp. 234
2009 ◽  
Vol 4 (12) ◽  
pp. 1934578X0900401
Author(s):  
Rokia Sanogo ◽  
Antonio Vassallo ◽  
Nicola Malafronte ◽  
Salvatore Imparato ◽  
Alessandra Russo ◽  
...  

One new flavonoid glycoside, 3-O-kaempferol 4-O-(galloyl)-β-D-glucoside, one new bergenin derivative, 11-0-caffeoylbergenin, along with other known flavonoids and phenolic derivatives, were isolated from the leaves of Securinega virosa. Their structures were established on the basis of detailed spectral analysis. In vitro biological analysis of the isolated compounds showed that they were able to quench DPPH radicals and had a direct scavenging activity on superoxide anion. Kaempferol 3-O-(4-galloyl)-β-D-glucopyranoside (1), 11-0-caffeoylbergenin (2), and glucogallin (6) exhibited the highest antioxidant capacity, being also able to modulate hydroxyl radical formation more efficiently than the other compounds, acting as direct hydroxyl radical scavengers and chelating iron.


2008 ◽  
Vol 393 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Mohammed R. Moussavian ◽  
Jan E. Slotta ◽  
Otto Kollmar ◽  
Michael D. Menger ◽  
Gernot Gronow ◽  
...  

1976 ◽  
Vol 11 (4) ◽  
pp. 599-607 ◽  
Author(s):  
Rao V. Panganamala ◽  
Hari M. Sharma ◽  
Richard E. Heikkila ◽  
Jack C. Geer ◽  
David G. Cornwell

1993 ◽  
Vol 265 (3) ◽  
pp. F435-F439 ◽  
Author(s):  
N. Ueda ◽  
B. Guidet ◽  
S. V. Shah

Iron, presumably by participating in generation of hydroxyl radical or other oxidant species or initiation of lipid peroxidation, has been shown to play an important role in several models of tissue injury, including acute renal failure induced by the antibiotic gentamicin. However, the sources of iron remain unknown. Rat renal mitochondria incubated at 37 degrees C with gentamicin resulted in a time- (15-60 min) and a dose-dependent (0.01-5 mM) iron release as measured by formation of iron-bathophenanthroline sulfonate complex FeII-(BPS)3 [at 60 min, control: 1.2 +/- 0.1 nmol/mg protein, n = 7; gentamicin (5 mM): 5.1 +/- 0.4 nmol/mg protein, n = 7]. No formation of FeII(BPS)3 complex was detected in the absence of mitochondria or when incubations were carried out at 0 degrees C. Similar results were obtained when 2,2'-dipyridyl, another iron chelator, was used for measurement of iron release. On the basis on our previous study that gentamicin enhances generation of hydrogen peroxide by renal cortical mitochondria, we examined whether effect of gentamicin on iron release is mediated by hydrogen peroxide. Catalase (which decomposes hydrogen peroxide), but not heat-inactivated catalase, as well as pyruvate, a potent scavenger of hydrogen peroxide, prevented gentamicin-induced iron mobilization. Superoxide dismutase, a scavenger of superoxide anion, or hydroxyl radical scavengers (dimethylthiourea or sodium benzoate) had no effect. Taken together, the data with scavengers indicate that gentamicin-induced iron mobilization from mitochondria is mediated by hydrogen peroxide.


Sign in / Sign up

Export Citation Format

Share Document