scholarly journals Nitrogen Accumulation and Acetylene Reduction Activity of Native Lupines on Disturbed Mountain Sites in Colorado

1990 ◽  
Vol 43 (1) ◽  
pp. 49 ◽  
Author(s):  
S. T. Kenny ◽  
R. L. Cuany
1979 ◽  
Vol 25 (10) ◽  
pp. 1197-1200 ◽  
Author(s):  
R. C. Shearman ◽  
W. L. Pedersen ◽  
R. V. Klucas ◽  
E. J. Kinbacher

Associative nitrogen fixation in Kentucky bluegrass (Poa pratensis L.) turfs inoculated with five nitrogen-fixing bacterial isolates was evaluated using the acetylene reduction assay and nitrogen accumulation as indicators of fixation. 'Park' and 'Nugget' Kentucky bluegrass turfs were grown in controlled environment chambers and inoculated with Klebsiella pneumoniae (W-2, W-6, and W-14), Erwinia herbicola (W-8), and Enterobacter cloacae (W-11). 'Park' inoculated with K. pneumoniae (W-6) had significant acetylene reduction activity using undisturbed turfs. Other treatments including turfs treated with heat-killed cells had no significant difference in acetylene reduction. In a second study, 'Park' and 'South Dakota Certified' turfs were grown in a greenhouse and inoculated with K. pneumoniae (W-6) and E. herbicola (W-8). 'Park' inoculated with K. pneumoniae (W-6) had increased acetylene reduction activity rates and also a greater nitrogen accumulation in aerial tissues when compared to controls. Acetylene reduction activity was correlated (r = 0.92) to nitrogen accumulation. Other treatments did not effectively increase acetylene reduction activity or nitrogen accumulation.


1981 ◽  
Vol 13 (6) ◽  
pp. 555-557 ◽  
Author(s):  
Forrest E. Dierberg ◽  
Patrick L. Brezonik

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 287 ◽  
Author(s):  
Khin Myat Soe ◽  
Aung Zaw Htwe ◽  
Kyi Moe ◽  
Abiko Tomomi ◽  
Takeo Yamakawa

Chickpea (Cicer arietinum L.) is one of the world’s main leguminous crops that provide chief source of food for humans. In the present study, we characterized thirty isolates of indigenous chickpea rhizobia from Myanmar based on the sequence analysis of the bacterial 16S rRNA gene. The sequence analysis confirmed that all isolates were categorized and identified as the genus Mesorhizobium and they were conspecific with M. plurifarium, M. muliense, M. tianshanense, and M. sp. This is the first report describing M. muliense, M. tianshanense, and M. plurifurium from different geographical distribution of indigenous mesorhizobia of chickpea in Myanmar. In order to substitute the use of chemical fertilizers in legume production, there is a need for the production of Biofertilizers with rhizobial inoculants. The effectiveness of Myanmar Mesorhizobim strains isolated from soil samples of major chickpea growing areas of Myanmar for plant growth and nitrogen fixation were studied in pot experiments. The nodule dry weight and acetylene reduction activity of the plant inoculated with Mesorhizobium tianshanense SalCP19 was significantly higher than the other tested isolates in Yezin-4 chickpea variety. But, Mesorhizobium sp. SalCP17 was showed high level of acetylene reduction activity per plant in Yezin-6 chickpea variety.


1989 ◽  
Vol 3 (4) ◽  
pp. 469-476 ◽  
Author(s):  
Ramzi M. Mohammad ◽  
W.F. Campbell ◽  
M.D. Rumbaugh

1978 ◽  
Vol 56 (18) ◽  
pp. 2218-2223 ◽  
Author(s):  
D. Smith ◽  
D. G. Patriquin

Excised root samples from 901 plants, representing 130 species of nonnodulated angiosperms largely in upland, pioneering habitats, were assayed for nitrogenase activity by the acetylene-reduction technique after overnight preincubation of the samples under low pO2. Most samples and most species exhibited very low excised root acetylene-reducing activities, but for 19 species, maximum values were greater than 50 nmol C2H4∙g−1∙h−1. In situ C2H2 assays, conducted on 10 species which had exhibited maximum excised root activities greater than 10 nmol C2H4∙g−1∙h−1, indicated average belowground N2-fixation rates of 3 to 92 g N∙ha−1∙day−1 and maxima greater than 100 g N∙ha−1∙day−1 for 3 of the 10 species. The highest values were for grasses characteristic of poorly drained soils and for some dicotyledonous weeds. It is concluded that the potential of temperate-zone angiosperms for nitrogenase activity by 'associative symbioses' approaches that of tropical forage grasses.


Sign in / Sign up

Export Citation Format

Share Document