salt tolerant
Recently Published Documents


TOTAL DOCUMENTS

1908
(FIVE YEARS 529)

H-INDEX

70
(FIVE YEARS 9)

2022 ◽  
Vol 12 (2) ◽  
pp. 840
Author(s):  
Laura S. S. Hulkko ◽  
Tanmay Chaturvedi ◽  
Mette Hedegaard Thomsen

Halophytes are salt-tolerant plants, and they have been utilised as healthy, nutritious vegetables and medicinal herbs. Various studies have shown halophytes to be rich in health-beneficial compounds with antioxidant activity, anti-inflammatory and antimicrobial effects, and cytotoxic properties. Despite their potential, these plants are still underutilised in agriculture and industrial applications. This review includes the state-of-the-art literature concerning the contents of proanthocyanidins (also known as condensed tannins), total phenolic compounds, photosynthetic pigments (chlorophyll and carotenoids), and vitamins in various halophyte biomasses. Various extraction and analytical methods are also considered. The study shows that various species have exhibited potential for use not only as novel food products but also in the production of nutraceuticals and as ingredients for cosmetics and pharmaceuticals.


2022 ◽  
Author(s):  
Rachel Predeepa ◽  
Ranjith Kumar ◽  
George C. Abraham ◽  
T. S. Subramanian

Abstract Background: Cotton is a major cash crop in the global and, in particular, the Indian markets, playing an important economic role in the textile and oil industries. The cotton plant is one of the highly bred plants that is highly sensitive to salt stress. As cotton is a non-food crop, the availability of non-saline terrain and water for the cultivation of cotton plants is only next to other food crops, thereby posing a need to better understand the salt tolerance of this plant. Gossypium hirsutum L. cultivars MCU 5, LRA 5166, and SVPR 2 were selected based on exomorphic traits like staple length and cropping season so that the genotypic responses to salt stress and salt shock can be compared for interpreting the effects of salinity on in vitro germination. Thus, this study aims to establish genotypic dependence on salinity tolerance. Results: The results affirmed genotypic variation in salinity tolerance, with MCU 5 tolerating salt stress better than LRA 5166 and SVPR 2 in all the observed stages of growth of the plant and the parameters measured. Further salt-tolerant cotton varieties were observed to be long-staple length varieties; staple length is the fiber character of the cotton lint. Moreover, salt tolerance in the vegetative growth stage of cotton plants is not independent of the germination stage of the plant.Conclusion: Nevertheless, the correlation of genotypic dependence to morphological characteristics, in particular, staple length (and cropping season), is of agronomic and commercial significance. Further research by screening and investigating a greater number of cultivars using biochemical and molecular techniques will provide a better understanding of this observed phenotypical relationship to the genotypes of cotton cultivars under salt stress.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ze Peng ◽  
Yiqin Wang ◽  
Guangdong Geng ◽  
Rui Yang ◽  
Zhifen Yang ◽  
...  

Salt stress results in the severe decline of yield and quality in wheat. In the present study, salt-tolerant Tritipyrum (“Y1805”) and salt-sensitive wheat “Chinese Spring” (“CS”) were selected from 121 wheat germplasms to test their physiological, antioxidant enzyme, and transcriptomic responses and mechanisms against salt stress and recovery. 56 chromosomes were identified in “Y1805” that comprised A, B, and D chromosomes from wheat parent and E chromosomes from Thinopyrum elongatum, adding to salt-tolerant trait. Salt stress had a greater inhibitory effect on roots than on shoots, and “Y1805” demonstrated stronger salt tolerance than “CS.” Compared with “CS,” the activities of superoxide dismutase and catalase in “Y1805” significantly increased under salt stress. “Y1805” could synthesize more proline and soluble sugars than “CS.” Both the net photosynthetic rate and chlorophyll a/b were affected by salt stress, though the level of damage in “Y1805” was significantly less than in “CS.” Transcriptome analysis showed that the differences in the transcriptional regulatory networks of “Y1805” were not only in response to salt stress but also in recovery. The functions of many salt-responsive differentially expressed genes were correlated closely with the pathways “peroxisome,” “arginine and proline metabolism,” “starch and sucrose metabolism,” “chlorophyll and porphyrin metabolism,” and “photosynthesis.”


2022 ◽  
Vol 81 (1) ◽  
Author(s):  
Iskender Tiryaki ◽  
Nuray Isidogru

The objectives of the present study were to determine salt tolerance levels of 12 different common vetch (Vicia sativa L.) cultivars at germination stage in the presence of 250 mM NaCl and to reveal genetic relationships based on gene targeted functional markers (GTFMs) associated with salt tolerance. The results revealed the presence of a significant genetic variation among the cultivars although s alt stress significantly reduced all germination parameters tested. The cultivar Ozveren was the most salt tolerant with 20.1% reduction in final germination percentage compared to control seeds while cultivars Alınoglu, Ayaz and Bakir did not germinate. The maximum delays in germination rate (G50 = 3.78 days) and synchrony (G10-90 = 3.45 days) were obtained from the cultivars Urkmez and Ozveren, respectively. The GTFMs provided a total of 53.1% polymorphism. The primers of MtSOS2 gene gave the highest numbers of alleles per primer pair while the highest polymorphism rate (77.8%) was obtained from the MtP5CS gene. The first three components of principal component analysis explained 57.63% of total variation. This study concluded that the cultivars determined to be salt tolerant and sensitive at germination stage distributed into three main clades determined by UPGMA analysis while the GTFMs associated with salt tolerance successfully determined the genetic relationships of common vetch cultivars.


2022 ◽  
pp. 128203
Author(s):  
Yinuo Li ◽  
Tingting Wei ◽  
Long Chen ◽  
Kaixiang Wang ◽  
Yulin Shi

2022 ◽  
Vol 134 ◽  
pp. 108503
Author(s):  
Xiaochi An ◽  
Zaifeng Wang ◽  
Xiaoming Teng ◽  
Ruirong Zhou ◽  
Xingxing Wang ◽  
...  

2021 ◽  
Vol 40 (4) ◽  
pp. 345-352
Author(s):  
Seul Lee ◽  
Anamika Khanal ◽  
Kathyleen Nogrado ◽  
Hyung-Geun Song ◽  
Yu-Sung Cho ◽  
...  

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Juyun Zheng ◽  
Zeliang Zhang ◽  
Zhaolong Gong ◽  
Yajun Liang ◽  
Zhiwei Sang ◽  
...  

Soil salinization is the main abiotic stress factor affecting agricultural production worldwide, and salt stress has a significant impact on plant growth and development. Cotton is one of the most salt-tolerant crops. Therefore, the selection and utilization of salt-tolerant germplasm resources and the excavation of salt resistance genes play important roles in improving cotton production in saline–alkali soils. In this study, we analysed the population structure and genetic diversity of a total 149 cotton plant materials including 137 elite Gossypium hirsutum cultivar accessions collected from China and 12 elite Gossypium hirsutum cultivar accessions collected from around the world. Illumina Cotton SNP 70 K was used to obtain genome-wide single-nucleotide polymorphism (SNP) data for 149 elite Gossypium hirsutum cultivar accessions, and 18,430 highly consistent SNP loci were obtained by filtering. It was assessed by using PCA principal component analysis so that the 149 elite Gossypium hirsutum cultivar accessions could be divided into two subgroups, including subgroup 1 with 78 materials and subgroup 2 with 71 materials. Using the obtained SNP and other marker genotype test results, under salt stress, the salt tolerance traits 3d Germination potential, 3d Radicle length drop rate, 7d Germination rate, 7d Radicle length drop rate, 7d Germination weight, 3d Radicle length, 7d Radicle length, Relative Germination potential, Relative Germination rate, 7d Radicle weight drop rate, Salt tolerance index 3d Germination potential index, 3d Radicle length index, 7d Radicle length index, 7d Radicle weight index and 7d Germination rate index were evaluated by GWAS (genome-wide association analysis). A total of 27 SNP markers closely related to the salt tolerance traits and 15 SNP markers closely related to the salt tolerance index were detected. At the SNP locus associated with phenotyping, Gh_D01G0943, Gh_D01G0945, Gh_A01G0906, Gh_A01G0908, Gh_D08G1308 and Gh_D08G1309 related to plant salt tolerance were detected, and they were found to be involved in intracellular transport, sucrose synthesis, osmotic pressure balance, transmembrane transport, N-glycosylation, auxin response and cell amplification. This study provides a theoretical basis for the selection and breeding of salt-tolerant upland cotton varieties.


Author(s):  
Tareq W. M. Amen ◽  
Meng Sun ◽  
Mitsuharu Terashima ◽  
Hidenari Yasui

Halophytes are unique in that they can thrive in a wide range of soil conditions, from normal to extremely saline. This has recently prompted researchers to consider using halophytes as a phytoremediation end-product as a source for biogas generation. Therefore, applying the anaerobic digestion process for halophytes may have the potential advantage in terms of efficient land utilization, soil remediation, and biogas production. Based on this, the anaerobic digestion efficiency of high saline biomass was investigated in continuous laboratory-scale anaerobic reactors at two different sludge residence times (SRT) of 40 and 80 days. Under mesophilic atmosphere, two reactors were operated, one reactor used organic substrate with 30 g-Na+.L-1 originating from sodium chloride whereas the other was operated with the presence of sodium bicarbonate and sodium sulfate. The salt-tolerant microorganism was gradually developed and the salt concentrations were selected based on the elemental analyses results of 30 species of wild halophyte plants taken from the saline-affected area of the Aral Sea in Uzbekistan during the early phase of the operation. For 40 and 80 days of SRT, respectively, 65.56 percent and 60.42 percent of the feed COD were converted into methane gas by the chloride system. However, only about 60% of the feed COD was converted into methane for bicarbonate, and the remaining fraction of gas was assigned to sulfide as a final product of increased sulfate reduction bacteria activity. These findings showed that the salt-tolerant microorganism could be incubated and the anaerobic digestion process could be adapted for a high-saline substrate, implying that the biodegradability of phytoremediation end-products may be used for methane production.


Sign in / Sign up

Export Citation Format

Share Document