Severe Traumatic Brain Injury

2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Kee D. Kim ◽  
Marike Zwienenberg ◽  
Kiarash Shahlaie

Traumatic brain injury remains a leading cause of death and disability worldwide. Patients with severe traumatic brain injury are best treated with a multidisciplinary, evidence-based, protocol-directed approach, which has been shown to decrease mortality and improve functional outcomes. Therapy is directed at the prevention of secondary brain injury through optimizing cerebral blood flow and the delivery of metabolic fuel (ie, oxygen and glucose). This is accomplished through the measurement and treatment of elevated intracranial pressure (ICP), the strict avoidance of hypotension and hypoxemia, and in some instances, surgical management. The treatment of elevated ICP is approached in a protocolized, tiered manner, with escalation of care occurring in the setting of refractory intracranial hypertension, culminating in either decompressive surgery or barbiturate coma. With such an approach, the rates of mortality secondary to traumatic brain injury are declining despite an increasing incidence of traumatic brain injury. This review contains 3 figures, 5 tables and 69 reference Key Words: blast traumatic brain injury, brain oxygenation, cerebral perfusion pressure, decompressive craniectomy, hyperosmolar therapy, intracranial pressure, neurocritical care, penetrating traumatic brain injury, severe traumatic brain injury

2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Kee D. Kim ◽  
Marike Zwienenberg ◽  
Kiarash Shahlaie

Traumatic brain injury remains a leading cause of death and disability worldwide. Patients with severe traumatic brain injury are best treated with a multidisciplinary, evidence-based, protocol-directed approach, which has been shown to decrease mortality and improve functional outcomes. Therapy is directed at the prevention of secondary brain injury through optimizing cerebral blood flow and the delivery of metabolic fuel (ie, oxygen and glucose). This is accomplished through the measurement and treatment of elevated intracranial pressure (ICP), the strict avoidance of hypotension and hypoxemia, and in some instances, surgical management. The treatment of elevated ICP is approached in a protocolized, tiered manner, with escalation of care occurring in the setting of refractory intracranial hypertension, culminating in either decompressive surgery or barbiturate coma. With such an approach, the rates of mortality secondary to traumatic brain injury are declining despite an increasing incidence of traumatic brain injury. This review contains 3 figures, 5 tables and 69 reference Key Words: blast traumatic brain injury, brain oxygenation, cerebral perfusion pressure, decompressive craniectomy, hyperosmolar therapy, intracranial pressure, neurocritical care, penetrating traumatic brain injury, severe traumatic brain injury


2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Kee D. Kim ◽  
Marike Zwienenberg ◽  
Kiarash Shahlaie

Traumatic brain injury remains a leading cause of death and disability worldwide. Patients with severe traumatic brain injury are best treated with a multidisciplinary, evidence-based, protocol-directed approach, which has been shown to decrease mortality and improve functional outcomes. Therapy is directed at the prevention of secondary brain injury through optimizing cerebral blood flow and the delivery of metabolic fuel (ie, oxygen and glucose). This is accomplished through the measurement and treatment of elevated intracranial pressure (ICP), the strict avoidance of hypotension and hypoxemia, and in some instances, surgical management. The treatment of elevated ICP is approached in a protocolized, tiered manner, with escalation of care occurring in the setting of refractory intracranial hypertension, culminating in either decompressive surgery or barbiturate coma. With such an approach, the rates of mortality secondary to traumatic brain injury are declining despite an increasing incidence of traumatic brain injury. This review contains 3 figures, 5 tables and 69 reference Key Words: blast traumatic brain injury, brain oxygenation, cerebral perfusion pressure, decompressive craniectomy, hyperosmolar therapy, intracranial pressure, neurocritical care, penetrating traumatic brain injury, severe traumatic brain injury


2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Kee D. Kim ◽  
Marike Zwienenberg ◽  
Kiarash Shahlaie

Traumatic brain injury remains a leading cause of death and disability worldwide. Patients with severe traumatic brain injury are best treated with a multidisciplinary, evidence-based, protocol-directed approach, which has been shown to decrease mortality and improve functional outcomes. Therapy is directed at the prevention of secondary brain injury through optimizing cerebral blood flow and the delivery of metabolic fuel (ie, oxygen and glucose). This is accomplished through the measurement and treatment of elevated intracranial pressure (ICP), the strict avoidance of hypotension and hypoxemia, and in some instances, surgical management. The treatment of elevated ICP is approached in a protocolized, tiered manner, with escalation of care occurring in the setting of refractory intracranial hypertension, culminating in either decompressive surgery or barbiturate coma. With such an approach, the rates of mortality secondary to traumatic brain injury are declining despite an increasing incidence of traumatic brain injury. This review contains 3 figures, 5 tables and 69 reference Key Words: blast traumatic brain injury, brain oxygenation, cerebral perfusion pressure, decompressive craniectomy, hyperosmolar therapy, intracranial pressure, neurocritical care, penetrating traumatic brain injury, severe traumatic brain injury


2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Kee D. Kim ◽  
Marike Zwienenberg ◽  
Kiarash Shahlaie

Traumatic brain injury remains a leading cause of death and disability worldwide. Patients with severe traumatic brain injury are best treated with a multidisciplinary, evidence-based, protocol-directed approach, which has been shown to decrease mortality and improve functional outcomes. Therapy is directed at the prevention of secondary brain injury through optimizing cerebral blood flow and the delivery of metabolic fuel (ie, oxygen and glucose). This is accomplished through the measurement and treatment of elevated intracranial pressure (ICP), the strict avoidance of hypotension and hypoxemia, and in some instances, surgical management. The treatment of elevated ICP is approached in a protocolized, tiered manner, with escalation of care occurring in the setting of refractory intracranial hypertension, culminating in either decompressive surgery or barbiturate coma. With such an approach, the rates of mortality secondary to traumatic brain injury are declining despite an increasing incidence of traumatic brain injury. This review contains 3 figures, 5 tables and 69 reference Key Words: blast traumatic brain injury, brain oxygenation, cerebral perfusion pressure, decompressive craniectomy, hyperosmolar therapy, intracranial pressure, neurocritical care, penetrating traumatic brain injury, severe traumatic brain injury


2012 ◽  
Vol 23 (2) ◽  
pp. 186-203
Author(s):  
Patricia A. Blissitt

Despite progress in the management of adults with severe traumatic brain injury, several controversies persist. Among the unresolved issues of greatest concern to neurocritical care clinicians and scientists are the following: (1) the best use of technological advances and the data obtained from multimodality monitoring; (2) the use of mannitol and hypertonic saline in the management of increased intracranial pressure; (3) the use of decompressive craniectomy and barbiturate coma in refractory increased intracranial pressure; (4) therapeutic hypothermia as a neuroprotectant; (5) anemia and the role of blood transfusion; and (6) venous thromboembolism prophylaxis in severe traumatic brain injury. Each of these strategies for managing severe traumatic brain injury, including the postulated mechanism(s) of action and beneficial effects of each intervention, adverse effects, the state of the science, and critical care nursing implications, is discussed.


Neurosurgery ◽  
2011 ◽  
Vol 70 (5) ◽  
pp. 1220-1231 ◽  
Author(s):  
Ursula K. Rohlwink ◽  
Eugene Zwane ◽  
A. Graham Fieggen ◽  
Andrew C. Argent ◽  
Peter D. le Roux ◽  
...  

Abstract BACKGROUND: Intracranial pressure (ICP) monitoring is a cornerstone of care for severe traumatic brain injury (TBI). Management of ICP can help ensure adequate cerebral blood flow and oxygenation. However, studies indicate that brain hypoxia may occur despite normal ICP and the relationship between ICP and brain oxygenation is poorly defined. This is particularly important for children in whom less is known about intracranial dynamics. OBJECTIVE: To examine the relationship between ICP and partial pressure of brain tissue oxygen (PbtO2) in children with severe TBI (Glasgow Coma Scale score ⩽8) admitted to Red Cross War Memorial Children's Hospital, Cape Town. METHODS: The relationship between time-linked hourly and high-frequency ICP and PbtO2 data was examined using correlation, regression, and generalized estimating equations. Thresholds for ICP were examined against reduced PbtO2 using age bands and receiver-operating characteristic curves. RESULTS: Analysis using more than 8300 hourly (n = 75) and 1 million high-frequency data points (n = 30) demonstrated a weak relationship between ICP and PbtO2 (r = 0.05 and r = 0.04, respectively). No critical ICP threshold for low PbtO2 was identified. Individual patients revealed a strong relationship between ICP and PbtO2 at specific times, but different relationships were evident over longer periods. CONCLUSION: The relationship between ICP and PbtO2 appears complex, and several factors likely influence both variables separately and in combination. Although very high ICP is associated with reduced PbtO2, in general, absolute ICP has a poor relationship with PbtO2. Because reduced PbtO2 is independently associated with poor outcome, a better understanding of ICP and PbtO2 management in pediatric TBI seems to be needed.


2008 ◽  
Vol 25 (4) ◽  
pp. E4 ◽  
Author(s):  
Anthony A. Figaji ◽  
Eugene Zwane ◽  
A. Graham Fieggen ◽  
Jonathan C. Peter ◽  
Peter D. Leroux

Object The goal of this paper was to examine the relationship between methods of acute clinical assessment and measures of secondary cerebral insults in severe traumatic brain injury in children. Methods Patients who underwent intracranial pressure (ICP), cerebral perfusion pressure (CPP), and brain oxygenation (PbtO2) monitoring and who had an initial Glasgow Coma Scale score, Pediatric Trauma Score, Pediatric Index of Mortality 2 score, and CT classification were evaluated. The relationship between these acute clinical scores and secondary cerebral insult measures, including ICP, CPP, PbtO2, and systemic hypoxia were evaluated using univariate and multivariate analysis. Results The authors found significant associations between individual acute clinical scores and select physiological markers of secondary injury. However, there was a large amount of variability in these results, and none of the scores evaluated predicted each and every insult. Furthermore, a number of physiological measures were not predicted by any of the scores. Conclusions Although they may guide initial treatment, grading systems used to classify initial injury severity appear to have a limited value in predicting who is at risk for secondary cerebral insults.


Sign in / Sign up

Export Citation Format

Share Document