Modelling the Impact of an Industrial Demand Response Electricity Rate

Author(s):  
Kenneth H. Tiedemann
Author(s):  
Hessam Golmohamadi ◽  
Reza Keypour ◽  
Birgitte Bak-Jensen ◽  
Jayakrishnan R. Pillai

2021 ◽  
Vol 2042 (1) ◽  
pp. 012096
Author(s):  
Christoph Waibel ◽  
Shanshan Hsieh ◽  
Arno Schlüter

Abstract This paper demonstrates the impact of demand response (DR) on optimal multi-energy systems (MES) design with building integrated photovoltaics (BIPV) on roofs and façades. Building loads and solar potentials are assessed using bottom-up models; the MES design is determined using a Mixed-Integer Linear Programming model (energy hub). A mixed-use district of 170,000 m2 floor area including office, residential, retail, education, etc. is studied under current and future climate conditions in Switzerland and Singapore. Our findings are consistent with previous studies, which indicate that DR generally leads to smaller system capacities due to peak shaving. We further show that in both the Swiss and Singapore context, cost and emissions of the MES can be reduced significantly with DR. Applying DR, the optimal area for BIPV placement increases only marginally for Singapore (~1%), whereas for Switzerland, the area is even reduced by 2-8%, depending on the carbon target. In conclusion, depending on the context, DR can have a noticeable impact on optimal MES and BIPV capacities and should thus be considered in the design of future, energy efficient districts.


Author(s):  
Monika Gaba ◽  
Saurabh Chanana

Abstract Demand response (DR), an integral part of the smart grid, has great potential in handling the challenges of the existing power grid. The potential of different DR programs in the energy management of residential consumers (RCs) and the integration of distributed energy resources (DERs) is an important research topic. A novel distributed approach for energy management of RCs considering the competitive interactions among them is presented in this paper. The impact of participation of RC’s in price-based (PB) and incentive-based (IB) DR programs is investigated using game theory. For this, an energy management optimization problem (EMOP) is formulated to minimize electricity cost. The utility company employs electricity price as a linear function of aggregated load in the PB DR program and an incentive rate in the IBDR program. RCs are categorized into active and passive users. Active users are further distinguished based on the ownership of energy storage devices (SD) and dispatchable generation units (DGU). EMOP is modeled using a non-cooperative game, and the distributed proximal decomposition method is used to obtain the Nash equilibrium of the game. The results of the proposed approach are analyzed using different case studies. The performance of the proposed approach is evaluated in terms of aggregated cost and system load profile. It has been observed that participation in PB and IBDR program benefits both the utility and the consumers.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4332
Author(s):  
Morteza Vahid-Ghavidel ◽  
Mohammad Sadegh Javadi ◽  
Matthew Gough ◽  
Sérgio F. Santos ◽  
Miadreza Shafie-khah ◽  
...  

A key challenge for future energy systems is how to minimize the effects of employing demand response (DR) programs on the consumer. There exists a diverse range of consumers with a variety of types of loads, such as must-run loads, and this can reduce the impact of consumer participation in DR programs. Multi-energy systems (MES) can solve this issue and have the capability to reduce any discomfort faced by all types of consumers who are willing to participate in the DRPs. In this paper, the most recent implementations of DR frameworks in the MESs are comprehensively reviewed. The DR modelling approach in such energy systems is investigated and the main contributions of each of these works are included. Notably, the amount of research in MES has rapidly increased in recent years. The majority of the reviewed works consider power, heat and gas systems within the MES. Over three-quarters of the papers investigated consider some form of energy storage system, which shows how important having efficient, cost-effective and reliable energy storage systems will be in the future. In addition, a vast majority of the works also considered some form of demand response programs in their model. This points to the need to make participating in the energy market easier for consumers, as well as the importance of good communication between generators, system operators, and consumers. Moreover, the emerging topics within the area of MES are investigated using a bibliometric analysis to provide insight to other researchers in this area.


Energy Policy ◽  
2020 ◽  
Vol 147 ◽  
pp. 111893
Author(s):  
Jan Stede ◽  
Karin Arnold ◽  
Christa Dufter ◽  
Georg Holtz ◽  
Serafin von Roon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document