scholarly journals Impact of demand response on BIPV and district multi-energy systems design in Singapore and Switzerland

2021 ◽  
Vol 2042 (1) ◽  
pp. 012096
Author(s):  
Christoph Waibel ◽  
Shanshan Hsieh ◽  
Arno Schlüter

Abstract This paper demonstrates the impact of demand response (DR) on optimal multi-energy systems (MES) design with building integrated photovoltaics (BIPV) on roofs and façades. Building loads and solar potentials are assessed using bottom-up models; the MES design is determined using a Mixed-Integer Linear Programming model (energy hub). A mixed-use district of 170,000 m2 floor area including office, residential, retail, education, etc. is studied under current and future climate conditions in Switzerland and Singapore. Our findings are consistent with previous studies, which indicate that DR generally leads to smaller system capacities due to peak shaving. We further show that in both the Swiss and Singapore context, cost and emissions of the MES can be reduced significantly with DR. Applying DR, the optimal area for BIPV placement increases only marginally for Singapore (~1%), whereas for Switzerland, the area is even reduced by 2-8%, depending on the carbon target. In conclusion, depending on the context, DR can have a noticeable impact on optimal MES and BIPV capacities and should thus be considered in the design of future, energy efficient districts.

2021 ◽  
Vol 11 (5) ◽  
pp. 2175
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Jesus C. Hernández

The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.


2020 ◽  
Vol 12 (3) ◽  
pp. 1131
Author(s):  
Wenliang Zhou ◽  
Xiaorong You ◽  
Wenzhuang Fan

To avoid conflicts among trains at stations and provide passengers with a periodic train timetable to improve service level, this paper mainly focuses on the problem of multi-periodic train timetabling and routing by optimizing the routes of trains at stations and their entering time and leaving time on each chosen arrival–departure track at each visited station. Based on the constructed directed graph, including unidirectional and bidirectional tracks at stations and in sections, a mixed integer linear programming model with the goal of minimizing the total travel time of trains is formulated. Then, a strategy is introduced to reduce the number of constraints for improving the solved efficiency of the model. Finally, the performance, stability and practicability of the proposed method, as well as the impact of some main factors on the model are analyzed by numerous instances on both a constructed railway network and Guang-Zhu inter-city railway; they are solved using the commercial solver WebSphere ILOG CPLEX (International Business Machines Corporation, New York, NY, USA). Experimental results show that integrating multi-periodic train timetabling and routing can be conducive to improving the quality of a train timetable. Hence, good economic and social benefits for high-speed rail can be achieved, thus, further contributing to the sustained development of both high-speed railway systems and society.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4332
Author(s):  
Morteza Vahid-Ghavidel ◽  
Mohammad Sadegh Javadi ◽  
Matthew Gough ◽  
Sérgio F. Santos ◽  
Miadreza Shafie-khah ◽  
...  

A key challenge for future energy systems is how to minimize the effects of employing demand response (DR) programs on the consumer. There exists a diverse range of consumers with a variety of types of loads, such as must-run loads, and this can reduce the impact of consumer participation in DR programs. Multi-energy systems (MES) can solve this issue and have the capability to reduce any discomfort faced by all types of consumers who are willing to participate in the DRPs. In this paper, the most recent implementations of DR frameworks in the MESs are comprehensively reviewed. The DR modelling approach in such energy systems is investigated and the main contributions of each of these works are included. Notably, the amount of research in MES has rapidly increased in recent years. The majority of the reviewed works consider power, heat and gas systems within the MES. Over three-quarters of the papers investigated consider some form of energy storage system, which shows how important having efficient, cost-effective and reliable energy storage systems will be in the future. In addition, a vast majority of the works also considered some form of demand response programs in their model. This points to the need to make participating in the energy market easier for consumers, as well as the importance of good communication between generators, system operators, and consumers. Moreover, the emerging topics within the area of MES are investigated using a bibliometric analysis to provide insight to other researchers in this area.


Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 266
Author(s):  
Sohye Baek ◽  
Young Hoon Lee ◽  
Seong Hyeon Park

Ambulance diversion (AD) is a common method for reducing crowdedness of emergency departments by diverting ambulance-transported patients to a neighboring hospital. In a multi-hospital system, the AD of one hospital increases the neighboring hospital’s congestion. This should be carefully considered for minimizing patients’ tardiness in the entire multi-hospital system. Therefore, this paper proposes a centralized AD policy based on a rolling-horizon optimization framework. It is an iterative methodology for coping with uncertainty, which first solves the centralized optimization model formulated as a mixed-integer linear programming model at each discretized time, and then moves forward for the time interval reflecting the realized uncertainty. Furthermore, the decentralized optimization, decentralized priority, and No-AD models are presented for practical application, which can also show the impact of using the following three factors: centralization, mathematical model, and AD strategy. The numerical experiments conducted based on the historical data of Seoul, South Korea, for 2017, show that the centralized AD policy outperforms the other three policies by 30%, 37%, and 44%, respectively, and that all three factors contribute to reducing patients’ tardiness. The proposed policy yields an efficient centralized AD management strategy, which can improve the local healthcare system with active coordination between hospitals.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6214
Author(s):  
Sara Ceschia ◽  
Luca Di Gaspero ◽  
Antonella Meneghetti

In recent years, cold food chains have shown an impressive growth, mainly due to customers life style changes. Consequently, the transportation of refrigerated food is becoming a crucial aspect of the chain, aiming at ensuring efficiency and sustainability of the process while keeping a high level of product quality. The recently defined Refrigerated Routing Problem (RRP) consists of finding the optimal delivery tour that minimises the fuel consumption for both the traction and the refrigeration components. The total fuel consumption is related, in a complex way, to the distance travelled, the vehicle load and speed, and the outdoor temperature. All these factors depend, in turn, on the traffic and the climate conditions of the region where deliveries take place and they change during the day and the year. The original RRP has been extended to take into account also the total driving cost and to add the possibility to slow down the deliveries by allowing arbitrarily long waiting times when this is beneficial for the objective function. The new RRP is formulated and solved as both a Mixed Integer Programming and a novel Constraint Programming model. Moreover, a Local Search metaheuristic technique (namely Late Acceptance Hill Climbing), based on a combination of different neighborhood structures, is also proposed. The results obtained by the different solution methods on a set of benchmarks scenarios are compared and discussed.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2409 ◽  
Author(s):  
Arslan Bashir ◽  
Mahdi Pourakbari Kasmaei ◽  
Amir Safdarian ◽  
Matti Lehtonen

Efficient utilization of renewable generation inside microgrids remains challenging. In most existing studies, the goal is to optimize the energy cost of microgrids by working in synergy with the main grid. This work aimed at maximizing the self-consumption of on-site photovoltaic (PV) generation using an electrical storage, as well as demand response solutions, in a building that was also capable of interacting with the main grid. Ten-minute resolution data were used to capture the temporal behavior of the weather. Extensive mathematical models were employed to estimate the demand for hot-water consumption, space cooling, and heating loads. The proposed framework is cast as mixed-integer linear programming model while minimizing the interaction with the grid. To evaluate the effectiveness of the proposed framework, it was applied to a typical Finnish household. Matching indices were used to evaluate the degree of overlap between generation and demand under different PV penetrations and storage capacities. Despite negative correlation of PV generation with Finnish seasonal consumption, a significant portion of demand can be satisfied solely with on-site PV generation during the spring and summer seasons.


Sign in / Sign up

Export Citation Format

Share Document