scholarly journals Crystallography of α Phase Precipitated on Dislocations and Deformation Twin Boundaries in a β Titanium Alloy

1992 ◽  
Vol 56 (9) ◽  
pp. 1020-1029 ◽  
Author(s):  
Tadashi Furuhara ◽  
Hideyuki Nakamori ◽  
Tadashi Maki
Author(s):  
X.D. Zhang ◽  
J.M.K. Wiezorek ◽  
D.J. Evanst ◽  
H.L. Fraser

A two phase alpha-beta titanium alloy, Ti-6Al-2Mo-2Cr-2Sn-2Zr-0.2Si (Ti-6-22-22S), has recently been reconsidered as a high temperature material for aircraft engine applications. This alloy exhibits specific strength and fracture toughness superior to those of Ti-6A1-4V. However, similar to other alpha-beta titanium alloys, microstructural stability is one of the major concerns regarding industrial application of Ti-6-22-22S, since changes of the microstructure during long term high temperature exposure significantly affect the performance of components. Two types of precipitates have been observed in Ti-6-22-22S alloys, namely silicides and alpha 2-Ti3Al. The presence of intermetallic precipitates, such as alpha 2-Ti3Al, in the parent alpha matrix has been reported to result in brittle behaviour of the alpha-beta alloys due to the formation of intense planar slip bands. The present paper presents results of the characterization of intermetallic alpha2-Ti3Al precipitates in the alpha phase by methods of scanning and transmission electron microscopy (SEM and TEM respectively).


2017 ◽  
Vol 121 ◽  
pp. 24-35 ◽  
Author(s):  
S. Sadeghpour ◽  
S.M. Abbasi ◽  
M. Morakabati ◽  
S. Bruschi

Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Alloy Digest ◽  
1991 ◽  
Vol 40 (8) ◽  

Abstract ALLVAC 6A1-6V-2Sn is a highly beta stabilized alpha + beta titanium alloy, a modification of the 6 A1-4V system. Added vanadium plus copper and iron produce the stabilizing effect. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-98. Producer or source: Teledyne Allvac.


Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract UNS No. R54620 is an alpha-beta titanium alloy. It has an excellent combination of tensile strength, creep strength, toughness and high-temperature stability that makes it suitable for service to 1050 F. It is recommended for use where high strength is required. It has outstanding advantages for long-time use at temperatures to 800 F. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-86. Producer or source: Titanium alloy mills.


2004 ◽  
Author(s):  
S. L. Semiatin ◽  
B. C. Kirby ◽  
G. A. Salishchev

Sign in / Sign up

Export Citation Format

Share Document