scholarly journals Development of Microstructure Simulation System in SIP-Materials Integration Projects

2020 ◽  
Vol 61 (11) ◽  
pp. 2047-2051
Author(s):  
Toshiyuki Koyama ◽  
Munekazu Ohno ◽  
Akinori Yamanaka ◽  
Tadashi Kasuya ◽  
Susumu Tsukamoto
Materia Japan ◽  
2019 ◽  
Vol 58 (9) ◽  
pp. 494-497
Author(s):  
Toshiyuki Koyama ◽  
Munekazu Ohno ◽  
Akinori Yamanaka ◽  
Tadashi Kasuya ◽  
Susumu Tsukamoto

2013 ◽  
Vol 61 (S 01) ◽  
Author(s):  
M Kaur ◽  
N Sprunk ◽  
U Schreiber ◽  
R Lange ◽  
J Weipert ◽  
...  

TAPPI Journal ◽  
2011 ◽  
Vol 11 (11) ◽  
pp. 23-30 ◽  
Author(s):  
ANDREAS MARK ◽  
ERIK SVENNING ◽  
ROBERT RUNDQVIST ◽  
FREDRIK EDELVIK ◽  
ERIK GLATT ◽  
...  

Paper forming is the first step in the paper machine where a fiber suspension leaves the headbox and flows through a forming fabric. Complex physical phenomena occur as the paper forms, during which fibers, fillers, fines, and chemicals added to the suspension interact. Understanding this process is important for the development of improved paper products because the configuration of the fibers during this step greatly influences the final paper quality. Because the effective paper properties depend on the microstructure of the fiber web, a continuum model is inadequate to explain the process and the properties of each fiber need to be accounted for in simulations. This study describes a new framework for microstructure simulation of early paper forming. The simulation framework includes a Navier-Stokes solver and immersed boundary methods to resolve the flow around the fibers. The fibers were modeled with a finite element discretization of the Euler-Bernoulli beam equation in a co-rotational formulation. The contact model is based on a penalty method and includes friction and elastic and inelastic collisions. We validated the fiber model and the contact model against demanding test cases from the literature, with excellent results. The fluid-structure interaction in the model was examined by simulating an elastic beam oscillating in a cross flow. We also simulated early paper formation to demonstrate the potential of the proposed framework.


2019 ◽  
Vol 7 (24) ◽  
pp. 15-19
Author(s):  
O.Yu. Kozlov ◽  
◽  
V.V. Kozlov ◽  
V.V. Agafonov ◽  
◽  
...  

Author(s):  
Robert D. Windhorst ◽  
Shannon Zelinski ◽  
Todd A. Lauderdale ◽  
Alexander Sadovsky ◽  
Yung-Cheng Chu ◽  
...  

2019 ◽  
Vol 18 (5) ◽  
pp. 1067-1076
Author(s):  
Andreea Bobei Sterian ◽  
Catalin Spulber ◽  
Octavia Borcan ◽  
Codrut Sarafoleanu ◽  
Paul Sterian

2020 ◽  
Author(s):  
Donna Rose Addis

Mental time travel (MTT) is defined as projecting the self into the past and the future. Despite growing evidence of the similarities of remembering past and imagining future events, dominant theories conceive of these as distinct capacities. I propose that memory and imagination are fundamentally the same process – constructive episodic simulation – and demonstrate that the ‘simulation system’ meets the three criteria of a neurocognitive system. Irrespective of whether one is remembering or imagining, the simulation system: (1) acts on the same information, drawing on elements of experience ranging from fine-grained perceptual details to coarser-grained conceptual information and schemas about the world; (2) is governed by the same rules of operation, including associative processes that facilitate construction of a schematic scaffold, the event representation itself, and the dynamic interplay between the two (cf. predictive coding); and (3) is subserved by the same brain system. I also propose that by forming associations between schemas, the simulation system constructs multi-dimensional cognitive spaces, within which any given simulation is mapped by the hippocampus. Finally, I suggest that simulation is a general capacity that underpins other domains of cognition, such as the perception of ongoing experience. This proposal has some important implications for the construct of ‘MTT’, suggesting that ‘time’ and ‘travel’ may not be defining, or even essential, features. Rather, it is the ‘mental’ rendering of experience that is the most fundamental function of this simulation system, enabling humans to re-experience the past, pre-experience the future, and also comprehend the complexities of the present.


Sign in / Sign up

Export Citation Format

Share Document