scholarly journals Metabolic pathway of phenol in Rhodotorula rubra.

1991 ◽  
Vol 37 (4) ◽  
pp. 379-388 ◽  
Author(s):  
KEIKO KATAYAMA-HIRAYAMA ◽  
SHUSAKU TOBITA ◽  
KIMIAKI HIRAYAMA
2020 ◽  
Vol 62 (1-2) ◽  
pp. 49-68
Author(s):  
T. O. Kondratiuk ◽  
T. V. Beregova ◽  
I. Yu. Parnikoza ◽  
S. Y. Kondratyuk ◽  
A. Thell

The identification of the diversity of microscopic fungi of lithobiont communities of the Argentine Islands in specimens collected during the 22nd Ukrainian Antarctic Expedition was the purpose of this work. Samples of rock, soil, mosses and lichens of rock micro-habitats of “Crustose lichen sub-formation and fruticose lichen and moss cushion sub-formation” were used in the work. These samples were used for extracting and cultivation of filamentous fungi on dense nutrient media. Determination of physiological and biochemical characteristics and identification of yeast-like fungi were performed using a microbiological analyser ‘Vitek-2’ (‘Bio Merieux’, France). Cultivation of microorganisms was carried out at temperatures from +2 to +37 °C. In results cultures of microscopic fungi of Zygomycota (Mucor circinelloides), Ascomycota (species of the genera cf. Tlielebolus, Talaromyces), representatives of the Anamorphic fungi group (Geomyces pannorum, species of the genera Alternaria, Acremonium, Aspergillus, Penicillium, and Cladosporium) were isolated from Antarctic samples. Microscopic fungi Penicillium spp. were dominated after the frequency in the studied samples (54.5%). Rhodotorula rubra and Candida sp. among isolated yeast fungi, and dark pigmented fungi represented by Aureobasidium pulhdans and Exophiala spp. were identified. The biological properties of a number of isolated fungi (the potential ability to synthesise important biologically active substances: melanins, carotenoids, lipids) are characterised. Mycobiota of rock communities of Argentine Islands is rich on filamentous and yeast fungi similarly to other regions of Antarctica. A number of fungi investigated are potentially able to synthesise biologically active substances. The dark pigmented species of the genera Cladosporium, Exophiala, Aureobasidium pulhdans, capable of melanin synthesis; ‘red’ yeast Rhodotorula rubra (carotenoid producers and resistant to toxic metals); Mucor circinelloides and Geomyces pannorum, lipid producers, are among these fungi. Yeast-like fungi assimilated a wide range of carbohydrates, which will allow them to be further used for cultivation in laboratory and process conditions. The collection of technologically promising strains of microorganisms, part of the Culture Collection of Fungi at Taras Shevchenko National University of Kyiv (Ukraine), is updated with isolated species (strains) of filamentous fungi and yeast – potential producers of biologically active substances, obtained within this study.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Mahyudin Abdul Rachman

Enterobacter aerogenes AY-2 mutant is known for hydrogen gas producer which ws obtained from the sludge of methane fermentation and the yield is 1.5 fold higher than wildtype. Hydrogen gas production can be gain via NADH oxidation in anaerobic metabolic pathway by blocking organic acid production. Metabolic pathway can be changed by mutagenesis. Enterobacter aerogenes AY-2 mutated with ethyl methane sulfonate in logarithmic phase with consentration 10, 11, 12, 13, 14 and 15 μl/ml cell suspention during 120 minute. Mutation that result lowest survival ratio (0,01%) was 14 μl EMS/ml cell suspention is repeated with variation incubation time, 30, 60, 90 and 120 minute. 166 double mutant colony has been collected and choosen randomly. The choosen 43 colony was fermented in glycerol complex medium for determining ten double mutant with the highest H2 production. Double mutant AD-H43 is a highest H2 producer that increase 20% H2 production from AY-2 and has a decrease lactid acid production, 31% less from AY-2. Increasing H2 production in double mutant AD-H43 is caused by lactate dehydrogenase deffi cient.Keywords: Enterobacter aerogenes AY-2, ethyl methane sulfonate (EMS), H2 and methane sludge


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2191-2194 ◽  
Author(s):  
M. Fujita ◽  
M. Ike ◽  
T. Kamiya

The metabolic pathway of the phenol degradation in Pseudomonasputida BH was amplified by introducing the recombinant plasmid containing catechol 2,3 oxygenase gene isolated fron the chromosome of BH. This strain could degrade phenol and grow much faster than the wild strain at the phenol concentration of 100mg/L. This strain seems to accelerate the phenol removal rate if it is applied to the treatment of wastewater containing phenol.


Sign in / Sign up

Export Citation Format

Share Document