Secretion of insulin in a perifusion system and conversion of proinsulin to insulin by pancreatic islets from hyperglycemic rats

Diabetes ◽  
1977 ◽  
Vol 26 (7) ◽  
pp. 650-656 ◽  
Author(s):  
K. Jain ◽  
J. Logothetopoulos
Author(s):  
F. B. P. Wooding ◽  
K. Pedley ◽  
N. Freinkel ◽  
R. M. C. Dawson

Freinkel et al (1974) demonstrated that isolated perifused rat pancreatic islets reproduceably release up to 50% of their total inorganic phosphate when the concentration of glucose in the perifusion medium is raised.Using a slight modification of the Libanati and Tandler (1969) method for localising inorganic phosphate by fixation-precipitation with glutaraldehyde-lead acetate we can demonstrate there is a significant deposition of lead phosphate (identified by energy dispersive electron microscope microanalysis) at or on the plasmalemma of the B cell of the islets (Fig 1, 3). Islets after incubation in high glucose show very little precipitate at this or any other site (Fig 2). At higher magnification the precipitate seems to be intracellular (Fig 4) but since any use of osmium or uranyl acetate to increase membrane contrast removes the precipitate of lead phosphate it has not been possible to verify this as yet.


1977 ◽  
Vol 86 (3) ◽  
pp. 552-560 ◽  
Author(s):  
Monica Söderberg ◽  
Inge-Bert Täljedal

ABSTRACT Effects of inorganic ions on the uptake of chloromercuribenzene-p-sulphonic acid (CMBS) were studied in microdissected pancreatic islets of non-inbred ob/ob-mice. Na2SO4 stimulated the total islet cell uptake of CMBS but decreased the amount of CMBS remaining in islets after brief washing with L-cysteine. CaCl2 stimulated both the total and the cysteine-non-displaceable uptake; the stimulatory effect of CaCl2 on the cysteine-non-displaceable CMBS uptake was counteracted by Na2SO4. NaCl, KCl or choline chloride had no significant effect on the total islet cell uptake of CMBS, whereas LiCl was stimulatory. It is concluded that β-cells resemble erythrocytes in having a permeation path for CMBS that is inhibited by SO42−. By analogy with existing models of the erythrocyte membrane, it is suggested that the SO42−-sensitive path leads to sulphydryl groups controlling monovalent cationic permeability in β-cells.


1985 ◽  
Vol 110 (3) ◽  
pp. 329-337 ◽  
Author(s):  
G. A. Schuiling ◽  
H. Moes ◽  
T. R. Koiter

Abstract. The effect of pretreatment in vivo with oestradiol benzoate on in vitro secretion of LH and FSH was studied in long-term ovariectomized (OVX) rats both at the end of a 5-day continuous in vivo pretreatment with LRH and 4-days after cessation of such LRH pretreatment. Rats were on day 0 sc implanted with osmotic minipumps which released LRH at the rate of 250 ng/h. Control rats were implanted with a piece of silicone elastomer with the dimensions of a minipump. On days 2 and 4 the rats were injected with either 3 μg EB or with oil. On day 5 part of the rats were decapitated and the in vitro autonomous (i.e. non-LRH-stimulated) and 'supra-maximally' LRHstimulated release of LH and FSH was studied using a perifusion system. From other rats the minipumps were removed on day 5 and perifusion was performed on day 9. On the 5th day of the in vivo LRH pretreatment the pituitary LH/FSH stores were partially depleted; the pituitaries of the EB-treated rats more so than those of the oil-injected rats. EB alone had no significant effect on the content of the pituitary LH- and FSH stores. On day 9, i.e. 4 days after removal of the minipumps, the pituitary LH and FSH contents had increased in both the oil- and the EB injected rats, but had not yet recovered to control values. In rats not subjected to the 5-days pretreatment with LRH EB had a positive effect on the supra-maximally LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. EB had no effect on the non-stimulated secretion of FSH. After 5 days of in vivo pretreatment with LRH only, the in vitro non-stimulated and supra-maximally LRH-stimulated secretion of both LH and FSH were strongly impaired, the effect correlating well with the LRH-induced depletion of the pituitary LH/FSH stores. In such LRH-pretreated rats EB had on day 5 a negative effect on the (already depressed) LRH-stimulated secretion of LH (not on that of FSH). EB had no effect on the non-stimulated LH/FSH secretion. It could be demonstrated that the negative effect of the combined LRH/EB pretreatment was mainly due to the depressing effect of this treatment on the pituitary LH and FSH stores: the effect of oestradiol on the pituitary LRH-responsiveness (release as related to pituitary gonadotrophin content) remained positive. In LRH-pretreated rats, however, this positive effect of EB was smaller than in rats not pretreated with LRH. Four days after removal of the minipumps there was again a positive effect of EB on the LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. The positive effect of EB on the pituitary LRH-responsiveness was as strong as in rats which had not been exposed to exogenous LRH. The non-stimulated secretion of FSH was again not affected by EB. The results demonstrate that the effect of EB on the oestrogen-sensitive components of gonadotrophin secretion consists of two components: an effect on the pituitary LRH-responsiveness proper, and an effect on the pituitary LH/FSH stores. The magnitude of the effect of EB on the LRH-responsiveness is LRH dependent: it is very weak (almost zero) in LRH-pretreated rats, but strong in rats not exposed to LRH as well as in rats of which the LRH-pretreatment was stopped 4 days previously. Similarly, the effect of EB on the pituitary LH and FSH stores is LRH-dependent: in the absence of LRH, EB has no influence on the contents of these stores, but EB can potentiate the depleting effect of LRH on the LH/FSH-stores. Also this effect disappear after cessation of the LRH-pretreatment.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1706-P ◽  
Author(s):  
ARUSHI VARSHNEY ◽  
STEPHEN PARKER ◽  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 339-LB
Author(s):  
HAIQIANG DOU ◽  
CAROLINE A. MIRANDA ◽  
QUAN ZHANG ◽  
PATRIK RORSMAN ◽  
JOHAN TOLö

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2168-P
Author(s):  
BURCAK YESILDAG ◽  
JOAN MIR-COLL ◽  
APARNA NEELAKANDHAN ◽  
FELIX FORSCHLER ◽  
ADELINN BIERNATH ◽  
...  

Diabetes ◽  
1979 ◽  
Vol 28 (4) ◽  
pp. 276-281 ◽  
Author(s):  
R. L. Gingerich ◽  
S. L. Aronoff ◽  
D. M. Kipnis ◽  
P. E. Lacy

Diabetes ◽  
1981 ◽  
Vol 30 (11) ◽  
pp. 911-922 ◽  
Author(s):  
M. D. Trus ◽  
W. S. Zawalich ◽  
P. T. Burch ◽  
D. K. Berner ◽  
V. A. Weill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document