insulin and glucagon secretion
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 16)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Mollie S.H. Friedlander ◽  
Vy M. Nguyen ◽  
Seung K. Kim ◽  
Romina J. Bevacqua

Pancreatic islets are vital endocrine regulators of systemic metabolism, and recent investigations have increasingly focused on understanding human islet biology. Studies of isolated human islets have advanced understanding of the development, function, and regulation of cells comprising islets, especially pancreatic α- and β-cells. However, the multicellularity of the intact islet has stymied specific experimental approaches—particularly in genetics and cell signaling interrogation. This barrier has been circumvented by the observation that islet cells can survive dispersion and reaggregate to form ‘pseudoislets’, organoids that retain crucial physiological functions, including regulated insulin and glucagon secretion. Recently, exciting advances in the use of pseudoislets for genetics, genomics, islet cell transplantation, and studies of intra-islet signaling and islet cell interactions have been reported by investigators worldwide. Here we review molecular and cellular mechanisms thought to promote islet cell reaggregation, summarize methods that optimize pseudoislet development, and detail recent insights about human islet biology from genetic and transplantation-based pseudoislet experiments. Owing to robust, international programs for procuring primary human pancreata, pseudoislets should serve as both a durable paradigm for primary organoid studies and as an engine of discovery for islet biology, diabetes, and metabolism research.


2021 ◽  
Author(s):  
Mollie S.H. Friedlander ◽  
Vy M. Nguyen ◽  
Seung K. Kim ◽  
Romina J. Bevacqua

Pancreatic islets are vital endocrine regulators of systemic metabolism, and recent investigations have increasingly focused on understanding human islet biology. Studies of isolated human islets have advanced understanding of the development, function, and regulation of cells comprising islets, especially pancreatic α- and β-cells. However, the multicellularity of the intact islet has stymied specific experimental approaches—particularly in genetics and cell signaling interrogation. This barrier has been circumvented by the observation that islet cells can survive dispersion and reaggregate to form ‘pseudoislets’, organoids that retain crucial physiological functions, including regulated insulin and glucagon secretion. Recently, exciting advances in the use of pseudoislets for genetics, genomics, islet cell transplantation, and studies of intra-islet signaling and islet cell interactions have been reported by investigators worldwide. Here we review molecular and cellular mechanisms thought to promote islet cell reaggregation, summarize methods that optimize pseudoislet development, and detail recent insights about human islet biology from genetic and transplantation-based pseudoislet experiments. Owing to robust, international programs for procuring primary human pancreata, pseudoislets should serve as both a durable paradigm for primary organoid studies and as an engine of discovery for islet biology, diabetes, and metabolism research.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 74
Author(s):  
Rui Gao ◽  
Tao Yang ◽  
Quan Zhang

Somatostatin-secreting δ-cells have aroused great attention due to their powerful roles in coordination of islet insulin and glucagon secretion and maintenance of glucose homeostasis. δ-cells exhibit neuron-like morphology with projections which enable pan-islet somatostatin paracrine regulation despite their scarcity in the islets. The expression of a range of hormone and neurotransmitter receptors allows δ-cells to integrate paracrine, endocrine, neural and nutritional inputs, and provide rapid and precise feedback modulations on glucagon and insulin secretion from α- and β-cells, respectively. Interestingly, the paracrine tone of δ-cells can be effectively modified in response to factors released by neighboring cells in this interactive communication, such as insulin, urocortin 3 and γ-aminobutyric acid from β-cells, glucagon, glutamate and glucagon-like peptide-1 from α-cells. In the setting of diabetes, defects in δ-cell function lead to suboptimal insulin and glucagon outputs and lift the glycemic set-point. The interaction of δ-cells and non-δ-cells also becomes defective in diabetes, with reduces paracrine feedback to β-cells to exacerbate hyperglycemia or enhanced inhibition of α-cells, disabling counter-regulation, to cause hypoglycemia. Thus, it is possible to restore/optimize islet function in diabetes targeting somatostatin signaling, which could open novel avenues for the development of effective diabetic treatments.


Author(s):  
Marine L. Croze ◽  
Marcus F. Flisher ◽  
Arthur Guillaume ◽  
Caroline Tremblay ◽  
Glyn M. Noguchi ◽  
...  

ABSTRACTObjectiveMaintenance of glucose homeostasis requires the precise regulation of hormone secretion from the endocrine pancreas. Free-fatty acid receptor 4 (FFAR4/GPR120) is a G protein-coupled receptor whose activation in islets of Langerhans promotes insulin and glucagon secretion and inhibits somatostatin secretion. However, the contribution of individual islet cell types (α, β, and δ cells) to the insulinotropic and glucagonotropic effects of GPR120 remains unclear. As gpr120 mRNA is enriched in somatostatin-secreting δ cells, we hypothesized that GPR120 activation stimulates insulin and glucagon secretion via inhibition of somatostatin release.MethodsGlucose tolerance tests were performed in mice after administration of the selective GPR120 agonist Compound A. Insulin, glucagon and somatostatin secretion were measured in static incubations of isolated mouse islets in response to endogenous (ω-3 polyunsaturated fatty acids) and/or pharmacological (Compound A and AZ-13581837) GPR120 agonists. The effect of Compound A on hormone secretion was tested further in islets isolated from mice with global or somatostatin cell-specific knockout of gpr120. Gpr120 expression was assessed in pancreatic section by RNA in situ hybridization and immunohistochemistry. Cyclic AMP (cAMP) and calcium dynamics in response to pharmacological GPR120 agonists were measured specifically in α, β and δ cells in intact islets using cAMPER and GCaMP6 reporter mice, respectively.ResultsAcute exposure to Compound A increased glucose tolerance and circulating insulin and glucagon levels in vivo. Endogenous and/or pharmacological and GPR120 agonists reduced somatostatin secretion in isolated islets and concomitantly demonstrated dose-dependent potentiation of glucose-stimulated insulin secretion and arginine-stimulated glucagon secretion. GPR120 was enriched in δ cells and pharmacological GPR120 agonists reduced cAMP and calcium levels in δ cells, but increased these signals in α and β cells. Compound A-mediated inhibition of somatostatin secretion was insensitive to pertussis toxin. The effect of Compound A on hormone secretion was completely absent in islets from mice with either global or somatostatin cell-specific deletion of gpr120 and was partially reduced upon blockade of somatostatin receptor signaling by cyclosomatostatin.ConclusionsInhibitory GPR120 signaling in δ cells contributes to both insulin and glucagon secretion in part via mitigating somatostatin release.


Sign in / Sign up

Export Citation Format

Share Document