choline chloride
Recently Published Documents





Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 558
Mario Komar ◽  
Tatjana Gazivoda Kraljević ◽  
Igor Jerković ◽  
Maja Molnar

In this study, deep eutectic solvents (DESs) were used as green and eco-friendly media for the synthesis of substituted 2-mercaptoquinazolin-4(3H)-ones from different anthranilic acids and aliphatic or aromatic isothiocyanates. A model reaction on anthranilic acid and phenyl isothiocyanate was performed in 20 choline chloride-based DESs at 80 °C to find the best solvent. Based on the product yield, choline chloride:urea (1:2) DES was found to be the most effective, while DESs acted both as solvents and catalysts. Desired compounds were prepared with moderate to good yields using stirring, microwave-assisted, and ultrasound-assisted synthesis. Significantly, higher yields were obtained with mixing and ultrasonication (16–76%), while microwave-induced synthesis showed lower effectiveness (13–49%). The specific contribution of this research is the use of DESs in combination with the above-mentioned green techniques for the synthesis of a wide range of derivatives. The structures of the synthesized compounds were confirmed by 1H and 13C NMR spectroscopy.

2022 ◽  
Vol 5 (1) ◽  
pp. 100
Lourdes Yurramendi ◽  
Jokin Hidalgo ◽  
Amal Siriwardana

The feasibility of using low-environmental-impact leaching media to recover valuable metals from lithium ion batteries (LIBs) has been evaluated. Several deep eutectic solvents (DES) were tested as leaching agents in the presence of different type of additives (i.e., H2O2). The optimization of Co recovery was carried out by investigating various operating conditions, such as reaction time, temperature, solid (black mass) to liquid (DES) ratio, additive type, and concentration. Leaching with final selected DES choline chloride (33%), lactic acid (53%), and citric acid (13%) at 55 °C achieved an extraction yield of more than 95% for the cobalt. The leaching mechanism likely begins with the dissolution of the active material in the black mass (BM) followed by chelation of Co(II) with the DES. The results obtained confirm that those leaching media are an eco-friendly alternative to the strong inorganic acids used nowadays.

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 86
Vadim Ippolitov ◽  
Ikenna Anugwom ◽  
Robin van Deun ◽  
Mika Mänttäri ◽  
Mari Kallioinen-Mänttäri

Ultrafiltration was employed in the purification of spent Deep Eutectic Solvent (DES, a mixture of choline chloride and lactic acid, 1:10, respectively) used in the extraction of lignin from lignocellulosic biomass. The aim of this was to recover different lignin fractions and to purify spent solvent. The results revealed that the commercial regenerated cellulose membranes—RC70PP and Ultracel 5 kDa UF membranes—could be used in the treatment of the spent DES. The addition of cosolvent (ethanol) to the spent DES decreased solvent’s viscosity, which enabled filtration. With two-pass ultrafiltration process with 10 kDa and 5 kDa membranes about 95% of the dissolved polymeric compounds (lignin and hemicelluloses) were removed from the spent DES. The utilized membranes also showed the capability to fractionate polymeric compounds into two fractions—above and under 10,000 Da. Moreover, the 10 kDa cellulose-based membrane showed good stability during a continuous period of three weeks exposure to the solution of DES and ethanol. Its pure water permeability decreased only by 3%. The results presented here demonstrate the possibility to utilize cellulose membranes in the treatment of spent DES to purify the solvent and recover the interesting compounds.

2022 ◽  
Vol 19 ◽  
Melita Lončarić ◽  

Abstract: Recently, more and more researchers are resorting to green methods and techniques to avoid environmental pollution. Accordingly, many researchers have been working on the development of new green synthetic procedures trying to avoid the use of toxic organic solvents. A sustainable concept of green and environmentally friendly solvents in chemical synthesis nowadays encompasses a relatively new generation of solvents called deep eutectic solvents (DESs). DESs often have a dual role in the synthesis, acting as both, solvents and catalysts. In this study, DESs are used in the Knoevenagel synthesis of rhodanine derivatives, with no addition of conventional catalysts. A model reaction of rhodanine and salicylaldehyde was performed in 20 different DESs at 80 °C, in order to find the best solvent, which was further used for the synthesis of the series of desired compounds. A series of rhodanines was synthesized in choline chloride: acetamide (ChCl:acetamide) DES with good to excellent yields (51.4 – 99.7 %).

Fan Yang ◽  
Yuting Li ◽  
Zhaofan Yue ◽  
Qingbo Fan ◽  
Hao Li ◽  

Abstract Solid-liquid composite lubrication system has attracted an increased interest for low friction and wear. Nevertheless, the effect of mechanical and surface properties of the solid materials, especially the mechanical and surface properties governed by doping elements, on the tribological performance solid-liquid composite lubrication system is still not well comprehended. Here, we reported the effect of W content on the mechanical and surface properties of W-DLC coatings as well as the tribological properties of W-DLC coatings under (choline chloride-urea and choline chloride-thiourea) deep eutectic solvents lubrication. Although the wear of W-DLC coatings under dry friction increases with W content, the wear under DESs is slight when coatings show excellent wettability to DESs or a DES-derived tribochemical film is formed. We demonstrate that the tribological behavior of W-DLC and DESs composite lubrication system is related to the mechanical properties of W-DLC coatings together with the contact angle and tribochemical interaction between DESs and W-DLC coatings.

2022 ◽  
Vol 12 (1) ◽  
pp. 61
Saif-ur-Rehman ◽  
Muhammad Khaliq U Zaman ◽  
Muhammad Ahsan Waseem ◽  
Shafiq Uz Zaman ◽  
Muhammad Shozab Mehdi

In this research, a novel DES (choline chloride + decanoic acid) was synthesized, and SBA-15 was functionalized by the DES to form a DES-SBA filler to fabricate MMMs. DES-SBA-based MMMs at 5%, 10%, 15%, and 20% were synthesized and evaluated. The DES-SBA-based MMMs were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Gas permeation tests were applied to the pure and mixed gas samples, and the results of the permeability and selectivity (CO2/CH4, and CO2/N2) of the membranes are reported. DES modification of SBA-15 increased the efficiency of the synthesized MMMs in comparison with the pristine polysulfone membrane.

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Bungo Shirouchi ◽  
Ayano Fukuda ◽  
Taiki Akasaka

Choline, betaine, and L-carnitine are transformed into trimethylamine (TMA) by gut microbiota, absorbed into the liver, and oxidized into trimethylamine-N-oxide (TMAO) by flavin-containing monooxygenases. Elevated TMAO levels may negatively affect human health. As phosphatidylcholine (PC) is the main source of dietary choline, its intake or PC-rich foods may be harmful to human health; however, quantitative comparative information among dietary choline compounds (PC, glycerophosphocholine [GPC], and choline chloride [CC]) regarding in vivo generation of TMAO is lacking. Here, we compared the effects of PC, GPC, and CC on plasma TMAO levels in rats. Furthermore, we investigated their effects on gut microbiota at the genus level. Dietary PC did not affect plasma TMAO levels, whereas dietary GPC and CC significantly increased them. At the genus level, plasma TMAO levels were significantly negatively correlated with relative abundances of Anaerotruncus, Actinomyces, Enterococcus, Dialister, Clostridium XIVa, and Granulicatella; they were significantly positively correlated with that of Coprobacter. Moreover, the relative abundances of Anaerotruncus and Coprobacter were found to predict plasma TMAO levels. Therefore, dietary PC, unlike GPC or CC, does not increase plasma TMAO levels in rats. Furthermore, several gut microbes are associated with changes in plasma TMAO levels in rats fed with choline compounds.

2022 ◽  
Vol 13 (1) ◽  
Stephanie Spittle ◽  
Derrick Poe ◽  
Brian Doherty ◽  
Charles Kolodziej ◽  
Luke Heroux ◽  

AbstractDeep eutectic solvents (DESs) are an emerging class of non-aqueous solvents that are potentially scalable, easy to prepare and functionalize for many applications ranging from biomass processing to energy storage technologies. Predictive understanding of the fundamental correlations between local structure and macroscopic properties is needed to exploit the large design space and tunability of DESs for specific applications. Here, we employ a range of computational and experimental techniques that span length-scales from molecular to macroscopic and timescales from picoseconds to seconds to study the evolution of structure and dynamics in model DESs, namely Glyceline and Ethaline, starting from the parent compounds. We show that systematic addition of choline chloride leads to microscopic heterogeneities that alter the primary structural relaxation in glycerol and ethylene glycol and result in new dynamic modes that are strongly correlated to the macroscopic properties of the DES formed.

Sign in / Sign up

Export Citation Format

Share Document