scholarly journals Decreased insulin responsiveness of glucose uptake in cultured human skeletal muscle cells from insulin-resistant nondiabetic relatives of type 2 diabetic families.

Diabetes ◽  
2000 ◽  
Vol 49 (7) ◽  
pp. 1169-1177 ◽  
Author(s):  
S Jackson ◽  
S M Bagstaff ◽  
S Lynn ◽  
S J Yeaman ◽  
D M Turnbull ◽  
...  
Endocrinology ◽  
1999 ◽  
Vol 140 (9) ◽  
pp. 3971-3980 ◽  
Author(s):  
Theodore P. Ciaraldi ◽  
Leslie Carter ◽  
Svetlana Nikoulina ◽  
Sunder Mudaliar ◽  
Donald A. McClain ◽  
...  

Abstract Chronic exposure (48 h) to glucosamine resulted in a dose-dependent reduction of basal and insulin-stimulated glucose uptake activities in human skeletal muscle cell cultures from nondiabetic and type 2 diabetic subjects. Insulin responsiveness of uptake was also reduced. There was no change in total membrane expression of either GLUT1, GLUT3, or GLUT4 proteins. While glucosamine treatment had no significant effects on hexokinase activity measured in cell extracts, glucose phosphorylation in intact cells was impaired after treatment. Under conditions where glucose transport and phosphorylation were down regulated, the fractional velocity (FV) of glycogen synthase was increased by glucosamine treatment. Neither the total activity nor protein expression of glycogen synthase were influenced by glucosamine treatment. The stimulation of glycogen synthase by glucosamine was not due totally to soluble mediators. Reflective of the effects on transport/phosphorylation, total glycogen content and net glycogen synthesis were reduced after glucosamine treatment. These effects were similar in nondiabetic and type 2 cells. In summary: 1) Chronic treatment with glucosamine reduces glucose transport/phosphorylation and storage into glycogen in skeletal muscle cells in culture and impairs insulin responsiveness as well. 2) Down-regulation of glucose transport/phosphorylation occurs at a posttranslational level of GLUTs. 3) Glycogen synthase activity increases with glucosamine treatment. 4) Nondiabetic and type 2 muscle cells display equal sensitivity and responsiveness to glucosamine. Increased exposure of skeletal muscle to glucosamine, a substrate/precursor of the hexosamine pathway, alters intracellular glucose metabolism at multiple sites and can contribute to insulin resistance in this tissue.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Julie Massart ◽  
Rasmus J. O. Sjögren ◽  
Brendan Egan ◽  
Christian Garde ◽  
Magnus Lindgren ◽  
...  

AbstractSkeletal muscle is a highly adaptable tissue and remodels in response to exercise training. Using short RNA sequencing, we determine the miRNA profile of skeletal muscle from healthy male volunteers before and after a 14-day aerobic exercise training regime. Among the exercise training-responsive miRNAs identified, miR-19b-3p was selected for further validation. Overexpression of miR-19b-3p in human skeletal muscle cells increases insulin signaling, glucose uptake, and maximal oxygen consumption, recapitulating the adaptive response to aerobic exercise training. Overexpression of miR-19b-3p in mouse flexor digitorum brevis muscle enhances contraction-induced glucose uptake, indicating that miR-19b-3p exerts control on exercise training-induced adaptations in skeletal muscle. Potential targets of miR-19b-3p that are reduced after aerobic exercise training include KIF13A, MAPK6, RNF11, and VPS37A. Amongst these, RNF11 silencing potentiates glucose uptake in human skeletal muscle cells. Collectively, we identify miR-19b-3p as an aerobic exercise training-induced miRNA that regulates skeletal muscle glucose metabolism.


2005 ◽  
Vol 47 (2) ◽  
pp. 366-374 ◽  
Author(s):  
Vigdis Aas ◽  
Merethe H. Rokling-Andersen ◽  
Eili Tranheim Kase ◽  
G. Hege Thoresen ◽  
Arild C. Rustan

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Selina Mäkinen ◽  
Neeta Datta-Sengupta ◽  
Yen Nguyen ◽  
Petro Kyrylenko ◽  
Markku Laakso ◽  
...  

Abstract Statin use, especially treatment with simvastatin, is associated with impaired insulin secretion and whole-body insulin sensitivity, and increased risk for T2D. Here, we investigated the direct effects of lactone- and acid-forms of simvastatin on glucose metabolism in primary human skeletal muscle cells. Exposure of human myotubes to lactone-form simvastatin for 48 h increased glucose uptake and glucose incorporation into glycogen, whereas the acid-form did not affect glucose uptake and decreased glucose incorporation into glycogen. These metabolic actions were accompanied by changes in insulin signaling, as phosphorylation of AS160 and GSK3β was upregulated with lactone-, but not with acid-form simvastatin. Exposure to both lactone and acid-forms of simvastatin led to a decrease in glycolysis and glycolytic capacity, as well as to a decrease in mitochondrial respiration and ATP production. Collectively these data indicate that lactone- and acid forms of simvastatin exhibit differences such that lactone-form increases, and acid-form impairs glucose incorporation into glycogen. Exposure to either form of simvastatin, however, impairs glycolysis and mitochondrial oxidative metabolism in human skeletal muscle cells.


2018 ◽  
Author(s):  
S Höckele ◽  
P Huypens ◽  
C Hoffmann ◽  
T Jeske ◽  
M Hastreiter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document