scholarly journals Effects of Pioglitazone on Adipose Tissue Remodeling Within the Setting of Obesity and Insulin Resistance

Diabetes ◽  
2001 ◽  
Vol 50 (8) ◽  
pp. 1863-1871 ◽  
Author(s):  
C. J. de Souza ◽  
M. Eckhardt ◽  
K. Gagen ◽  
M. Dong ◽  
W. Chen ◽  
...  
2020 ◽  
Vol 12 (571) ◽  
pp. eaay4145 ◽  
Author(s):  
Raziel Rojas-Rodriguez ◽  
Rachel Ziegler ◽  
Tiffany DeSouza ◽  
Sana Majid ◽  
Aylin S. Madore ◽  
...  

Pregnancy is a physiological state of continuous adaptation to changing maternal and fetal nutritional needs, including a reduction of maternal insulin sensitivity allowing for appropriately enhanced glucose availability to the fetus. However, excessive insulin resistance in conjunction with insufficient insulin secretion results in gestational diabetes mellitus (GDM), greatly increasing the risk for pregnancy complications and predisposing both mothers and offspring to future metabolic disease. Here, we report a signaling pathway connecting pregnancy-associated plasma protein A (PAPPA) with adipose tissue expansion in pregnancy. Adipose tissue plays a central role in the regulation of insulin sensitivity, and we show that, in both mice and humans, pregnancy caused remodeling of adipose tissue evidenced by altered adipocyte size, vascularization, and in vitro expansion capacity. PAPPA is known to be a metalloprotease secreted by human placenta that modulates insulin-like growth factor (IGF) bioavailability through prolteolysis of IGF binding proteins (IGFBPs) 2, 4, and 5. We demonstrate that recombinant PAPPA can stimulate ex vivo human adipose tissue expansion in an IGFBP-5– and IGF-1–dependent manner. Moreover, mice lacking PAPPA displayed impaired adipose tissue remodeling, pregnancy-induced insulin resistance, and hepatic steatosis, recapitulating multiple aspects of human GDM. In a cohort of 6361 pregnant women, concentrations of circulating PAPPA are inversely correlated with glycemia and odds of developing GDM. These data identify PAPPA and the IGF signaling pathway as necessary for the regulation of maternal adipose tissue physiology and systemic glucose homeostasis, with consequences for long-term metabolic risk and potential for therapeutic use.


Diabetes ◽  
2016 ◽  
Vol 65 (12) ◽  
pp. 3649-3659 ◽  
Author(s):  
Akiko Takikawa ◽  
Arshad Mahmood ◽  
Allah Nawaz ◽  
Tomonobu Kado ◽  
Keisuke Okabe ◽  
...  

2012 ◽  
Vol 97 (4) ◽  
pp. 1320-1327 ◽  
Author(s):  
Charmaine S. Tam ◽  
Joan Tordjman ◽  
Adeline Divoux ◽  
Louise A. Baur ◽  
Karine Clément

Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3525-3538 ◽  
Author(s):  
Hong Guo ◽  
Merlijn Bazuine ◽  
Daozhong Jin ◽  
Merry M. Huang ◽  
Samuel W. Cushman ◽  
...  

Lipocalin 2 (Lcn2) has previously been characterized as an adipokine/cytokine playing a role in glucose and lipid homeostasis. In this study, we investigate the role of Lcn2 in adipose tissue remodeling during high-fat diet (HFD)-induced obesity. We find that Lcn2 protein is highly abundant selectively in inguinal adipose tissue. During 16 weeks of HFD feeding, the inguinal fat depot expanded continuously, whereas the expansion of the epididymal fat depot was reduced in both wild-type (WT) and Lcn2−/− mice. Interestingly, the depot-specific effect of HFD on fat mass was exacerbated and appeared more pronounced and faster in Lcn2−/− mice than in WT mice. In Lcn2−/− mice, adipocyte hypertrophy in both inguinal and epididymal adipose tissue was more profoundly induced by age and HFD when compared with WT mice. The expression of peroxisome proliferator-activated receptor-γ protein was significantly down-regulated, whereas the gene expression of extracellular matrix proteins was up-regulated selectively in epididymal adipocytes of Lcn2−/− mice. Consistent with these observations, collagen deposition was selectively higher in the epididymal, but not in the inguinal adipose depot of Lcn2−/− mice. Administration of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone (Rosi) restored adipogenic gene expression. However, Lcn2 deficiency did not alter the responsiveness of adipose tissue to Rosi effects on the extracellular matrix expression. Rosi treatment led to the further enlargement of adipocytes with improved metabolic activity in Lcn2−/− mice, which may be associated with a more pronounced effect of Rosi treatment in reducing TGF-β in Lcn2−/− adipose tissue. Consistent with these in vivo observations, Lcn2 deficiency reduces the adipocyte differentiation capacity of stromal-vascular cells isolated from HFD-fed mice in these cells. Herein Rosi treatment was again able to stimulate adipocyte differentiation to a similar extent in WT and Lcn2−/− inguinal and epididymal stromal-vascular cells. Thus, combined, our data indicate that Lcn2 has a depot-specific role in HFD-induced adipose tissue remodeling.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Weinan Zhou ◽  
Oludemilade Akinrotimi ◽  
Neal Dadlani ◽  
Sayeepriyadarshini Anakk

Sign in / Sign up

Export Citation Format

Share Document