InsB9-23 Gene Transfer To Hepatocytes-Based Combined Therapy Abrogates Recurrence of Type-1 Diabetes After Islet Transplantation

2020 ◽  
Author(s):  
Ada Admin ◽  
Fabio Russo ◽  
Antonio Citro ◽  
Giorgia Squeri ◽  
Francesca Sanvito ◽  
...  

The induction of antigen (Ag)-specific tolerance represents a therapeutic option for autoimmune diabetes. We demonstrated that administration of lentiviral vector enabling expression of insulinB9-23 (LV.InsB) in hepatocytes, arrests β cell destruction in pre-diabetic NOD mice, by generating InsB9-23-specific FoxP3+T regulatory cells (Tregs). LV.InsB in combination with a suboptimal dose of anti-CD3 mAb (combined therapy, 1X5µg CT5) reverts diabetes and prevents recurrence of autoimmunity following islets transplantation in ~50% of NOD mice. We investigated whether CT optimization could lead to abrogation of recurrence of autoimmunity. Therefore, allo-islets were transplanted after optimized CT tolerogenic conditioning (1X25µg CT25). Diabetic NOD mice conditioned with CT25 when glycaemia was <500mg/dL, remained normoglycaemic for 100 days after allo-islets transplantation, displayed reduced insulitis, but independently from the graft. Accordingly, cured mice showed T cell unresponsiveness to InsB9-23 stimulation and increased Tregs frequency in islets infiltration and pancreatic LN. Additional studies revealed a complex mechanism of Ag-specific immune regulation driven by CT25, in which both Tregs and PDL1 co-stimulation cooperate to control diabetogenic cells, while transplanted islets play a crucial role, although transient, recruiting diabetogenic cells. Therefore, CT25 before allo-islets transplantation represents an Ag-specific immunotherapy to resolve autoimmune diabetes in the presence of residual endogenous β cell mass.

2020 ◽  
Author(s):  
Ada Admin ◽  
Fabio Russo ◽  
Antonio Citro ◽  
Giorgia Squeri ◽  
Francesca Sanvito ◽  
...  

The induction of antigen (Ag)-specific tolerance represents a therapeutic option for autoimmune diabetes. We demonstrated that administration of lentiviral vector enabling expression of insulinB9-23 (LV.InsB) in hepatocytes, arrests β cell destruction in pre-diabetic NOD mice, by generating InsB9-23-specific FoxP3+T regulatory cells (Tregs). LV.InsB in combination with a suboptimal dose of anti-CD3 mAb (combined therapy, 1X5µg CT5) reverts diabetes and prevents recurrence of autoimmunity following islets transplantation in ~50% of NOD mice. We investigated whether CT optimization could lead to abrogation of recurrence of autoimmunity. Therefore, allo-islets were transplanted after optimized CT tolerogenic conditioning (1X25µg CT25). Diabetic NOD mice conditioned with CT25 when glycaemia was <500mg/dL, remained normoglycaemic for 100 days after allo-islets transplantation, displayed reduced insulitis, but independently from the graft. Accordingly, cured mice showed T cell unresponsiveness to InsB9-23 stimulation and increased Tregs frequency in islets infiltration and pancreatic LN. Additional studies revealed a complex mechanism of Ag-specific immune regulation driven by CT25, in which both Tregs and PDL1 co-stimulation cooperate to control diabetogenic cells, while transplanted islets play a crucial role, although transient, recruiting diabetogenic cells. Therefore, CT25 before allo-islets transplantation represents an Ag-specific immunotherapy to resolve autoimmune diabetes in the presence of residual endogenous β cell mass.


2021 ◽  
Author(s):  
Eunjin Oh ◽  
Erika M. McCown ◽  
Miwon Ahn ◽  
Pablo A. Garcia ◽  
Sergio Branciamore ◽  
...  

Syntaxin 4 (STX4), a plasma membrane-localized SNARE protein, regulates human islet β-cell insulin secretion and preservation of β-cell mass. We found that human type 1 diabetic (T1D) and non-obese diabetic (NOD) mouse islets show reduced β-cell STX4 expression, consistent with decreased STX4 expression as a potential driver of T1D phenotypes. To test this hypothesis, we generated inducible β-cell-specific STX4-expressing NOD mice (NOD-iβSTX4).<b> </b>Of NOD-iβSTX4 mice, 73% had sustained normoglycemia versus <20% of control NOD (NOD-Ctrl) mice, by 25 weeks of age. At 12 weeks of age, prior to diabetes conversion, NOD-iβSTX4 mice demonstrated superior whole-body glucose tolerance and β-cell glucose responsiveness than NOD-Ctrl mice. Higher β-cell mass and reduced β-cell apoptosis were also detected in NOD-iβSTX4 pancreata compared with those of NOD-Ctrl mice. Single-cell RNA‐sequencing revealed that islets from NOD-iβSTX4 had markedly reduced IFNƔ signaling and TNFα signaling via NF-ĸB in islet β-cells, including reduced expression of the chemokine CCL5; CD4<sup>+</sup> Treg cells were also enriched in NOD-iβSTX4 islets. These results provide a deeper mechanistic understanding of STX4 function in β-cell protection and warrant further investigation of STX4 enrichment as a strategy to reverse or prevent T1D in humans or protect β-cell grafts.


2021 ◽  
Author(s):  
Eunjin Oh ◽  
Erika M. McCown ◽  
Miwon Ahn ◽  
Pablo A. Garcia ◽  
Sergio Branciamore ◽  
...  

Syntaxin 4 (STX4), a plasma membrane-localized SNARE protein, regulates human islet β-cell insulin secretion and preservation of β-cell mass. We found that human type 1 diabetic (T1D) and non-obese diabetic (NOD) mouse islets show reduced β-cell STX4 expression, consistent with decreased STX4 expression as a potential driver of T1D phenotypes. To test this hypothesis, we generated inducible β-cell-specific STX4-expressing NOD mice (NOD-iβSTX4).<b> </b>Of NOD-iβSTX4 mice, 73% had sustained normoglycemia versus <20% of control NOD (NOD-Ctrl) mice, by 25 weeks of age. At 12 weeks of age, prior to diabetes conversion, NOD-iβSTX4 mice demonstrated superior whole-body glucose tolerance and β-cell glucose responsiveness than NOD-Ctrl mice. Higher β-cell mass and reduced β-cell apoptosis were also detected in NOD-iβSTX4 pancreata compared with those of NOD-Ctrl mice. Single-cell RNA‐sequencing revealed that islets from NOD-iβSTX4 had markedly reduced IFNƔ signaling and TNFα signaling via NF-ĸB in islet β-cells, including reduced expression of the chemokine CCL5; CD4<sup>+</sup> Treg cells were also enriched in NOD-iβSTX4 islets. These results provide a deeper mechanistic understanding of STX4 function in β-cell protection and warrant further investigation of STX4 enrichment as a strategy to reverse or prevent T1D in humans or protect β-cell grafts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Deepika Watts ◽  
Marthe Janßen ◽  
Mangesh Jaykar ◽  
Francesco Palmucci ◽  
Marc Weigelt ◽  
...  

Type 1 diabetes (T1D) represents a hallmark of the fatal multiorgan autoimmune syndrome affecting humans with abrogated Foxp3+ regulatory T (Treg) cell function due to Foxp3 gene mutations, but whether the loss of Foxp3+ Treg cell activity is indeed sufficient to promote β cell autoimmunity requires further scrutiny. As opposed to human Treg cell deficiency, β cell autoimmunity has not been observed in non-autoimmune-prone mice with constitutive Foxp3 deficiency or after diphtheria toxin receptor (DTR)-mediated ablation of Foxp3+ Treg cells. In the spontaneous nonobese diabetic (NOD) mouse model of T1D, constitutive Foxp3 deficiency did not result in invasive insulitis and hyperglycemia, and previous studies on Foxp3+ Treg cell ablation focused on Foxp3DTR NOD mice, in which expression of a transgenic BDC2.5 T cell receptor (TCR) restricted the CD4+ TCR repertoire to a single diabetogenic specificity. Here we revisited the effect of acute Foxp3+ Treg cell ablation on β cell autoimmunity in NOD mice in the context of a polyclonal TCR repertoire. For this, we took advantage of the well-established DTR/GFP transgene of DEREG mice, which allows for specific ablation of Foxp3+ Treg cells without promoting catastrophic autoimmune diseases. We show that the transient loss of Foxp3+ Treg cells in prediabetic NOD.DEREG mice is sufficient to precipitate severe insulitis and persistent hyperglycemia within 5 days after DT administration. Importantly, DT-treated NOD.DEREG mice preserved many clinical features of spontaneous diabetes progression in the NOD model, including a prominent role of diabetogenic CD8+ T cells in terminal β cell destruction. Despite the severity of destructive β cell autoimmunity, anti-CD3 mAb therapy of DT-treated mice interfered with the progression to overt diabetes, indicating that the novel NOD.DEREG model can be exploited for preclinical studies on T1D under experimental conditions of synchronized, advanced β cell autoimmunity. Overall, our studies highlight the continuous requirement of Foxp3+ Treg cell activity for the control of genetically pre-installed autoimmune diabetes.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jeannette Lo ◽  
Chang-Qing Xia ◽  
Ruihua Peng ◽  
Michael J. Clare-Salzler

Dendritic cell (DC) immunotherapy has been effective for prevention of type 1 diabetes (T1D) in NOD mice but fails to protect if initiated after active autoimmunity. As autoreactivity expands inter- and intramolecularly during disease progression, we investigated whether DCs unpulsed or pulsed with β cell antigenic dominant determinants (DD), subdominant determinants (SD), and ignored determinants (ID) could prevent T1D in mice with advanced insulitis. We found that diabetes was significantly delayed by DC therapy. Of interest, DCs pulsed with SD or ID appeared to provide better protection. T lymphocytes from DC-treated mice acquired spontaneous proliferating capability during in vitro culture, which could be largely eliminated by IL-2 neutralizing antibodies. This trend maintained even 29 weeks after discontinuing DC therapy and appeared antigen-independent. Furthermore, CD4+Foxp3+ T regulatory cells (Tregs) from DC-treated mice proliferated more actively in vitro compared to the controls, and Tregs from DC-treated mice showed significantly enhanced immunosuppressive activities in contrast to those from the controls. Our study demonstrates that DC therapy leads to long-lasting immunomodulatory effects in an antigen-dependent and antigen-independent manner and provides evidence for peptide-based intervention during a clinically relevant window to guide DC-based immunotherapy for autoimmune diabetes.


2020 ◽  
Author(s):  
David G. Ramirez ◽  
Awaneesh K. Upadhyay ◽  
Vinh T. Pham ◽  
Mark Ciccaglione ◽  
Mark A Borden ◽  
...  

AbstractType 1 diabetes (T1D) results from immune infiltration and destruction of insulin-producing β-cells within the pancreatic islets of Langerhans (insulitis), resulting in loss of glucose homeostasis. Early diagnosis during pre-symptomatic T1D would allow for therapeutic intervention prior to substantial loss of β-cell mass at T1D onset. There are limited methods to track the progression of insulitis and β-cell mass decline in pre-symptomatic T1D. During insulitis, the islet microvasculature increases permeability, such that sub-micron sized particles can extravasate and accumulate within the islet microenvironment. Ultrasound is a widely deployable and cost-effective clinical imaging modality. However, conventional microbubble contrast agents are restricted to the vasculature. Sub-micron sized nanodroplet (ND) phasechange agents can be vaporized into micron-sized bubbles; serving as a circulating microbubble precursor. We tested if NDs extravasate into the immune-infiltrated islet microenvironment. We performed ultrasound contrast-imaging following ND infusion in NOD mice and NOD;Rag1ko controls, and tracked diabetes development. We measured the biodistribution of fluorescently labeled NDs, with histological analysis of insulitis. Ultrasound contrast signal was elevated in the pancreas of 10w NOD mice following ND infusion and vaporization, but was absent in both the non-infiltrated kidney of NOD mice and pancreas of Rag1ko controls. High contrast elevation also correlated with rapid diabetes onset. In pancreata of NOD mice, infiltrated islets and nearby exocrine tissue were selectively labeled with fluorescent NDs. Thus, contrast ultrasound imaging with ND phase-change agents can detect insulitis prior to diabetes onset. This will be important for monitoring disease progression to guide and assess preventative therapeutic interventions for T1D.SignificanceThere is a need for imaging methods to detect type1 diabetes (T1D) progression prior to clinical diagnosis. T1D is a chronic disease that results from autoreactive T cells infiltrating the islet of Langerhans and destroying insulin-producing β-cells. Overt disease takes years to present and is only diagnosed after significant β-cells loss. As such, the possibility of therapeutic intervention to preserve β-cell mass is hampered by an inability to follow pre-symptomatic T1D progression. There are immunotherapies that can delay T1D development. However identifying ‘at risk’ individuals, and tracking whether therapeutic interventions are impacting disease progression, prior to T1D onset, is lacking. A method to detect insulitis and β-cell mass decline would present an opportunity to guide therapeutic treatments to prevent T1D.


2017 ◽  
Vol 114 (10) ◽  
pp. 2753-2758 ◽  
Author(s):  
Haruka Okamoto ◽  
Katie Cavino ◽  
Erqian Na ◽  
Elizabeth Krumm ◽  
Sun Y. Kim ◽  
...  

Inactivating mutations in the insulin receptor results in extreme insulin resistance. The resulting hyperglycemia is very difficult to treat, and patients are at risk for early morbidity and mortality from complications of diabetes. We used the insulin receptor antagonist S961 to induce severe insulin resistance, hyperglycemia, and ketonemia in mice. Using this model, we show that glucagon receptor (GCGR) inhibition with a monoclonal antibody normalized blood glucose and β-hydroxybutyrate levels. Insulin receptor antagonism increased pancreatic β-cell mass threefold. Normalization of blood glucose levels with GCGR-blocking antibody unexpectedly doubled β-cell mass relative to that observed with S961 alone and 5.8-fold over control. GCGR antibody blockage expanded α-cell mass 5.7-fold, and S961 had no additional effects. Collectively, these data show that GCGR antibody inhibition represents a potential therapeutic option for treatment of patients with extreme insulin-resistance syndromes.


2005 ◽  
Vol 14 (5) ◽  
pp. 249-261 ◽  
Author(s):  
Giovanni Luca ◽  
Claudio Nastruzzi ◽  
Mario Calvitti ◽  
Ennio Becchetti ◽  
Tiziano Baroni ◽  
...  

Neonatal porcine cell clusters (NPCCs) might replace human for transplant in patients with type 1 diabetes mellitus (T1DM). However, these islets are not immediately functional, due to their incomplete maturation/differentiation. We then have addressed: 1) to assess whether in vitro coculture of islets with homologous Sertoli cells (SC) would shorten NPCCs' functional time lag, by accelerating the β-cell biological maturation/differentiation; 2) to evaluate metabolic outcome of the SC preincubated, and microencapsulated NPCCs, upon graft into spontaneously diabetic NOD mice. The islets, isolated from <3 day piglets, were examined in terms of morphology/viability/function and final yield. SC effects on the islet maturation pathways, both in vitro and in vivo, upon microencapsulation in alginate/poly-L-ornithine, and intraperitoneal graft into spontaneously diabetic NOD mice were determined. Double fluorescence immunolabeling showed increase in β-cell mass for SC+ neonatal porcine islets versus islets alone. In vitro insulin release in response to glucose, as well as mRNA insulin expression, were significantly higher for SC+ neonatal porcine islets compared with control, thereby confirming SC-induced increase in viable and functional β-cell mass. Graft of microencapsulated SC+ neonatal porcine islets versus encapsulated islets alone resulted in significantly longer remission of hyperglycemia in NOD mice. We have preliminarily shown that the in vitro NPCCs' maturation time lag can dramatically be curtailed by coincubating these islets with SC. Graft of microencapsulated neonatal porcine islets, precultured in Sertoli cells, has been proven successful in correcting hyperglycemia in stringent animal model of spontaneous diabetes.


2003 ◽  
Vol 198 (7) ◽  
pp. 1103-1106 ◽  
Author(s):  
Irina Apostolou ◽  
Zhenyue Hao ◽  
Klaus Rajewsky ◽  
Harald von Boehmer

In type 1 diabetes, autoimmune T cells cause destruction of pancreatic β cells by largely unknown mechanism. Previous analyses have shown that β cell destruction is delayed but can occur in perforin-deficient nonobese diabetic (NOD) mice and that Fas-deficient NOD mice do not develop diabetes. However, because of possible pleiotropic functions of Fas, it was not clear whether the Fas receptor was an essential mediator of β cell death in type 1 diabetes. To directly test this hypothesis, we have generated a β cell–specific knockout of the Fas gene in a transgenic model of type 1 autoimmune diabetes in which CD4+ T cells with a transgenic TCR specific for influenza hemagglutinin (HA) are causing diabetes in mice that express HA under control of the rat insulin promoter. Here we show that the Fas-deficient mice develop autoimmune diabetes with slightly accelerated kinetics indicating that Fas-dependent apoptosis of β cells is a dispensable mode of cell death in this disease.


Sign in / Sign up

Export Citation Format

Share Document