treg cell
Recently Published Documents


TOTAL DOCUMENTS

536
(FIVE YEARS 193)

H-INDEX

49
(FIVE YEARS 11)

2021 ◽  
Vol 79 (1) ◽  
Author(s):  
Shuaifeng Yan ◽  
Viktoria Golumba-Nagy ◽  
Konstantin Kotschenreuther ◽  
Jan Thiele ◽  
Nasrin Refaian ◽  
...  

AbstractAutoimmune arthritis is characterized by impaired regulatory T (Treg) cell migration into inflamed joint tissue and by dysregulation of the balance between Treg cells and Th17 cells. Interleukin-6 (IL-6) is known to contribute to this dysregulation, but the molecular mechanisms behind impaired Treg cell migration remain largely unknown. In this study, we assessed dynamic changes in membrane-bound IL-6 receptor (IL6R) expression levels on Th17 cells by flow cytometry during the development of collagen-induced arthritis (CIA). In a next step, bioinformatics analysis based on proteomics was performed to evaluate potential pathways affected by altered IL-6R signaling in autoimmune arthritis. Our analysis shows that membrane-bound IL-6R is upregulated on Th17 cells and is inversely correlated with IL-6 serum levels in experimental autoimmune arthritis. Moreover, IL-6R expression is significantly increased on Th17 cells from untreated patients with rheumatoid arthritis (RA). Interestingly, CD4+ T cells from CIA mice and RA patients show reduced phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Bioinformatics analysis based on proteomics of CD4+ T cells with low or high phosphorylation levels of VASP revealed that integrin signaling and related pathways are significantly enriched in cells with low phosphorylation of VASP. Specific inhibition of p-VASP reduces the migratory function of Treg cells but has no influence on effector CD4+ T cells. Importantly, IL-6R blockade restores the phosphorylation level of VASP, thereby improving the migratory function of Treg cells from RA patients. Thus, our results establish a link between IL6R signaling and phosphorylation of VASP, which controls Treg cell migration in autoimmune arthritis.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
C. T. Azevedo ◽  
A. C. Cotias ◽  
A. C. S. Arantes ◽  
T. P. T. Ferreira ◽  
M. A. Martins ◽  
...  

Background. Regulatory T cells (Tregs) are important in regulating responses to innocuous antigens, such as allergens, by controlling the Th2 response, a mechanism that appears to be compromised in atopic asthmatic individuals. Different isogenic mouse strains also have distinct immunological responses and susceptibility to the experimental protocols used to develop lung allergic inflammation. In this work, we investigated the differences in the frequency of Treg cell subtypes among A/J, BALB/c, and C57BL/6, under normal conditions and following induction of allergic asthma with ovalbumin (OVA). Methods. Subcutaneous sensitization followed by 4 consecutive intranasal OVA challenges induced asthma characteristic changes such as airway hyperreactivity, inflammation, and production of Th2 cytokines (IL-4, IL-13, IL-5, and IL-33) in the lungs of only A/J and BALB/c but not C57BL/6 strain and evaluated by invasive whole-body plethysmography, flow cytometry, and ELISA, respectively. Results. A/J strain naturally showed a higher frequency of CD4+IL-10+ T cells in the lungs of naïve mice compared to the other strains, accompanied by higher frequencies of CD4+IL-4+ T cells. C57BL/6 mice did not develop lung inflammation and presented higher frequency of CD4+CD25+Foxp3+ Treg cells in the bronchoalveolar lavage fluid (BALF) after the allergen challenge. In in vitro settings, allergen-specific stimulation of mediastinal LN (mLN) cells from OVA-challenged animals induced higher frequency of CD4+IL-10+ Treg cells from A/J strain and CD4+CD25+Foxp3+ from C57BL/6. Conclusions. The observed differences in the frequencies of Treg cell subtypes associated with the susceptibility of the animals to experimental asthma suggest that CD4+CD25+Foxp3+ and IL-10-producing CD4+ Treg cells may play different roles in asthma control. Similar to asthmatic individuals, the lack of an efficient regulatory response and susceptibility to the development of experimental asthma in A/J mice further suggests that this strain could be preferably chosen in experimental models of allergic asthma.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010085
Author(s):  
Ryuta Uraki ◽  
Masaki Imai ◽  
Mutsumi Ito ◽  
Hiroaki Shime ◽  
Mizuyu Odanaka ◽  
...  

Regulatory T (Treg) cells, which constitute about 5–10% of CD4+T cells expressing Foxp3 transcription factor and CD25(IL-2 receptor α chain), are key regulators in controlling immunological self-tolerance and various immune responses. However, how Treg cells control antigen-specific immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unclear. In this study, we examined the effect of transient breakdown of the immunological tolerance induced by Treg-cell depletion on adaptive immune responses against administered SARS-CoV-2 antigen, spike protein 1 (S1). Notably, without the use of adjuvants, transient Treg-cell depletion in mice induced anti-S1 antibodies that neutralized authentic SARS-CoV-2, follicular helper T cell formation and S1-binding germinal center B cell responses, but prevented the onset of developing autoimmune diseases. To further clarify the mechanisms, we investigated maturation of dendritic cells (DCs), which is essential to initiate antigen-specific immunity. We found that the transient Treg-cell depletion resulted in maturation of both migratory and resident DCs in draining lymph nodes that captured S1-antigen. Moreover, we observed S1-specific CD4+ T cells and CD8+ T cells with interferon-γ production. Thus, captured S1 was successfully presented by DCs, including cross-presentation to CD8+ T cells. These data indicate that transient Treg-cell depletion in the absence of adjuvants induces maturation of antigen-presenting DCs and succeeds in generating antigen-specific humoral and cellular immunity against emerging SARS-CoV-2 antigens. Finally, we showed that SARS-CoV-2 antigen-specific immune responses induced by transient Treg-cell depletion in the absence of adjuvants were compatible with those induced with an effective adjuvant, polyriboinosinic:polyribocytidyl acid (poly IC) and that the combination of transient Treg-cell depletion with poly IC induced potent responses. These findings highlight the capacity for manipulating Treg cells to induce protective adaptive immunity to SARS-CoV-2 with activating antigen-presenting DCs, which may improve the efficacy of ongoing vaccine therapies and help enhance responses to emerging SARS-CoV-2 variants.


Author(s):  
Jianwen Deng ◽  
Chunting Lu ◽  
Qingtong Zhao ◽  
Kexiao Chen ◽  
Shuyuan Ma ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Viviana Volta ◽  
Sandra Pérez-Baos ◽  
Columba de la Parra ◽  
Olga Katsara ◽  
Amanda Ernlund ◽  
...  

AbstractRegulatory T cells (Treg cells) inhibit effector T cells and maintain immune system homeostasis. Treg cell maturation in peripheral sites requires inhibition of protein kinase mTORC1 and TGF-beta-1 (TGF-beta). While Treg cell maturation requires protein synthesis, mTORC1 inhibition downregulates it, leaving unanswered how Treg cells achieve essential mRNA translation for development and immune suppression activity. Using human CD4+ T cells differentiated in culture and genome-wide transcription and translation profiling, here we report that TGF-beta transcriptionally reprograms naive T cells to express Treg cell differentiation and immune suppression mRNAs, while mTORC1 inhibition impairs translation of T cell mRNAs but not those induced by TGF-beta. Rather than canonical mTORC1/eIF4E/eIF4G translation, Treg cell mRNAs utilize the eIF4G homolog DAP5 and initiation factor eIF3d in a non-canonical translation mechanism that requires cap-dependent binding by eIF3d directed by Treg cell mRNA 5’ noncoding regions. Silencing DAP5 in isolated human naive CD4+ T cells impairs their differentiation into Treg cells. Treg cell differentiation is mediated by mTORC1 downregulation and TGF-beta transcriptional reprogramming that establishes a DAP5/eIF3d-selective mechanism of mRNA translation.


Author(s):  
Jianqin Li ◽  
Yalin Xia ◽  
Xiaoru Fan ◽  
Xiaofang Wu ◽  
Feiyun Yang ◽  
...  

Background: Immune thrombocytopenic purpura (ITP) is an autoimmune bleeding disorder and the decreased number and immunosuppressive dysfunction of Treg cells are key promoters of ITP. However, their mechanisms in ITP development have not been fully clarified.Methods: HUWE1 mRNA and protein levels in CD4+ T cells in peripheral blood from ITP patients were assessed by quantitative real-time PCR and Western blot. HUWE1 function in ITP was estimated using flow cytometry, enzyme-linked immunosorbent assay and immunosuppression assay. Besides, the HUWE1 mechanism in reducing the number and function of Treg cells in ITP was investigated by immunoprecipitation, cycloheximide-chase assay, ubiquitin experiment and immunofluorescence assay.Results: HUWE1 expression was elevated in CD4+ T cells in peripheral blood from ITP patients and HUWE1 mRNA level was negatively correlated with platelet counts and Treg cell percentage. Moreover, the interference with HUWE1 increased the number of Treg cells and enhanced its immunosuppressive function, and the HUWE1 overexpression produced the opposite results. For the exploration of mechanism, HUWE1 interacted with E26 transformation-specific-1 (Ets-1) and this binding was dependent on the negative regulation of the phosphorylation level of Ets-1 (Thr38) and HUWE1 facilitated the ubiquitin degradation of Ets-1 protein to restrain Treg cell differentiation and weaken their immunosuppressive functions. The in vivo assay confirmed that the HUWE1 inhibitor alleviated ITP in mice.Conclusion: HUWE1 induced the immune imbalance in ITP by decreasing the number and weakening the function of Treg cells through the ubiquitination degradation of Ets-1.


2021 ◽  
Author(s):  
◽  
Wei Su ◽  

Inflammation is essential for the clearance of pathogens and to facilitate healing of damaged tissue. However, this process must be controlled to limit immunopathology. Cell-intrinsic effects of inhibitory and signaling molecules are known to maintain quiescence and prevent effector differentiation and inflammation. Moreover, specific populations of immune cells exert cell-extrinsic effects for immunosuppression. Therefore, studies on the immunosuppressive functions of these cell populations will provide a better understanding of how inflammation is regulated and how its dysregulation causes human disease. Additional insights in this area may uncover novel targets to be manipulated for therapeutic benefit in autoimmune and inflammatory disorders, such as neurodegenerative diseases. Foxp3-expressing regulatory T (Treg) cells are specialized immunosuppressive cells that establish immune tolerance to prevent the development of autoimmune and other inflammatory diseases, with effector-Treg (eTreg) cells playing a pivotal role. Recently, cellular metabolism has emerged as a mediator to enforce Treg-cell function and heterogeneity. In Chapter 3, we used genetic and pharmacological tools to demonstrate that isoprenoid-dependent posttranslational lipid modifications dictate eTreg-cell accumulation and function by intersecting with T cell receptor (TCR)-induced intracellular signaling. We showed that isoprenoids are essential for activated Treg-cell suppressive activity, and Treg cell-specific deletion of the enzymes that mediate farnesylation and geranylgeranylation (encoded by Fntb and Pggt1b, respectively) leads to a reduction of eTreg cells and the development of fatal autoimmunity. In Chapter 4, we further explored the mechanistic role of protein prenylation in the regulation of eTreg cells by performing a comprehensive analysis of protein prenylation-dependent molecular signaling in eTreg-cells. Specifically, we found that Fntb drives eTreg-cell maintenance by promoting mTORC1 activity-dependent proliferation and ICOS-mediated cellular fitness. In contrast, Pggt1b orchestrated transcriptional programming by TCR stimulation and Rac signaling to establish eTreg-cell differentiation and immune tolerance. Therefore, our results reveal a bidirectional interplay between immune signals, metabolism-mediated posttranslational modifications, and intracellular signaling for the differentiation and maintenance of eTreg cells. Neuroinflammation is also a feature of neurogenerative diseases, but the underlying cellular mechanisms that limit inflammation in neurodegenerative diseases are largely unknown. In Chapter 5, using single cell RNA-sequencing (scRNA-seq) of immune cells in a mouse model of neurodegeneration (specifically, Alzheimer’s disease AD), we found that CD8 T cells accumulated in the brain parenchyma. These CD8 T cells had tissue resident memory-associated features and appeared to retain functionality. Importantly, T cell ablation was found to exacerbate disease-associated deposition of Beta- amyloid (A-Beta) and cognitive decline in a mouse model of AD. Moreover, in the absence of T cells, microglia acquired proinflammatory features and clustered in regions near A-Beta plaques, features associated with more severe disease. Collectively, these results suggest that T cells are critical to restrain microglia activation and limit neurodegeneration-associated pathologies in a murine model of AD.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yuta Nakazawa ◽  
Nanako Nishiyama ◽  
Hitoshi Koizumi ◽  
Kazumasa Kanemaru ◽  
Chigusa Nakahashi-Oda ◽  
...  

Although tumor-infiltrating regulatory T (Treg) cells play a pivotal role in tumor immunity, how Treg cell activation are regulated in tumor microenvironments remains unclear. Here, we found that mice deficient in the inhibitory immunoreceptor CD300a on their dendritic cells (DCs) have increased numbers of Treg cells in tumors and greater tumor growth compared with wild-type mice after transplantation of B16 melanoma. Pharmacological impairment of extracellular vesicle (EV) release decreased Treg cell numbers in CD300a-deficient mice. Coculture of DCs with tumor-derived EV (TEV) induced the internalization of CD300a and the incorporation of EVs into endosomes, in which CD300a inhibited TEV-mediated TLR3–TRIF signaling for activation of the IFN-β-Treg cells axis. We also show that higher expression of CD300A was associated with decreased tumor-infiltrating Treg cells and longer survival time in patients with melanoma. Our findings reveal the role of TEV and CD300a on DCs in Treg cell activation in the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document