tcr repertoire
Recently Published Documents


TOTAL DOCUMENTS

548
(FIVE YEARS 234)

H-INDEX

45
(FIVE YEARS 9)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yi-Tung Chen ◽  
Hung-Chih Hsu ◽  
Yun-Shien Lee ◽  
Hsuan Liu ◽  
Bertrand Chin-Ming Tan ◽  
...  

Colorectal cancer (CRC) is a major cause of cancer mortality and morbidity. Despite advances in chemotherapy and targeted therapy, unsustainable clinical benefit was noted due to recurrence and therapy resistance. The immune status of the cancer patient may affect the effectiveness of disease treatments. The dynamic change in the T-cell receptor (TCR) repertoire might be a clinical parameter for monitoring treatment responses. In this study, we aimed to determine the characteristics and clinical significance of the TCR repertoire in patients with unresectable metastatic colorectal cancer (mCRC). Herein, we comprehensively profile 103 peripheral blood samples from 20 healthy controls and 16 CRC patients with a follow-up of 98 to 452 days to identify hypervariable rearrangements of the TCRα and TCRβ repertoires using high-throughput sequencing. We found that TCRα repertoires, TCRβ repertoires, and CDR3 clonotypes were altered in mCRC patients compared with healthy controls. The diversity of TCR repertoires and CDR3 clonotypes decreased in most mCRC patients after therapy. Furthermore, compared with baseline TCR diversity, patients whose TCR diversity dropped considerably during therapy had better treatment responses, including lower CEA and CA19-9 levels and smaller tumor sizes. TCR baseline diversity was also significantly associated with partial response (PR) status (odds ratio: 5.29, p = 0.04). In conclusion, the present study demonstrated the association between dynamic changes in TCR diversity during chemotherapy and clinical outcomes as well as the potential utility of the TCR repertoire in predicting the prognosis of cancer treatment.


2022 ◽  
pp. ji2100824
Author(s):  
Evan S. Walsh ◽  
Tammy S. Tollison ◽  
Hayden N. Brochu ◽  
Brian I. Shaw ◽  
Kayleigh R. Diveley ◽  
...  

2022 ◽  
Author(s):  
Gengxi Cai ◽  
Zhanwen Guan ◽  
Yabin Jin ◽  
Zuhui Su ◽  
Xiangping Chen ◽  
...  

PURPOSE Neoadjuvant chemotherapy (NAC) has been widely used in patients with breast cancer to minish tumor burden and increase resection rate of cancer. T-cell repertoire has been believed to be able to monitor antitumor immune responses. This study aimed to explore the dynamic change of T-cell repertoire and its clinical value in evaluating the tumor response in patients with breast cancer receiving NAC. MATERIALS AND METHODS Ninety-four patients who underwent NAC before surgery were recruited, and peripheral blood samples were collected at multiple time points during NAC. High-throughput T-cell receptor (TCR)-β sequencing was used to characterize the T-cell repertoire of every sample and analyzed the changes in circulating T-cell repertoire during NAC. RESULTS We found that the diversity of TCR repertoires was associated with age and clinical stage of the patients with breast cancer. The distribution of Vβ and Jβ genes in TCR repertoires was skewed in patients with human epidermal growth factor receptor 2–positive (HER2+) breast cancer. Vβ20.1 and Vβ30 expression levels before NAC correlate with tumor response after all cycles of NAC in HER2– and HER2+ patients, respectively. Some CDR3 motifs that correlated with clinical response in either HER2+ or HER2– patients were identified. Besides, TCR repertoire evolved during NAC and the diversity of TCR repertoire decreased more after two cycles of NAC in patients with good tumor response after all cycles of NAC ( P = .0061). CONCLUSION Our results demonstrated that TCR repertoire correlated with the characteristics of the tumor, such as the expression status of HER2. Moreover, some characteristics of TCR repertoires that correlated with clinical response were identified and they might provide useful information to tailor therapeutic regimens at the early cycle of NAC.


2021 ◽  
Author(s):  
Anne-Sophie Hamy ◽  
Judith Abecassis ◽  
Lauren Darrigues ◽  
Cecile Laurent ◽  
Francois Zaccarini ◽  
...  

Synchronous bilateral breast cancer (sBBC) occurs after both breasts have been affected by the same germline genetics, reproductive life factors and environmental exposures for decades. It represents an opportunity to decipher the complex interplay between host, tumor, immune system and response to neoadjuvant chemotherapy (NAC). On a cohort of 17575 BCs treated between 2005 and 2012, sBBCs (n=404) were associated with less aggressive proliferative patterns and higher rates of luminal breast cancers (BCs) when compared with unilateral BCs (n=17171). The left and right tumors were concordant for the majority of clinical and pathological features. Tumor pairs of concordant BC subtype were more frequent than pairs of discordant BC subtype, with notably a particularly high frequency of pairs of luminal BCs. Intriguingly, both the levels of tumor infiltrating lymphocytes (TILs) and the response to NAC were modified by the subtype of the contralateral tumors. Whole exome sequencing and RNAseq analyses revealed that left and right tumors were independent from a somatic mutation and transcriptomic point of view, while primary tumors (PT) before NAC and specimens with residual disease (RD) after NAC were more closely related. The analysis of the TCR repertoire identified very little overlap between patients, while common clones were shared in bilateral tumors within each patient. After NAC, the TCR repertoire of RD was enriched and expanded with clones edited by the contralateral PT.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 68
Author(s):  
Yifan Wang ◽  
Fugang Duan ◽  
Zhu Zhu ◽  
Meng Yu ◽  
Xiaodong Jia ◽  
...  

Coronavirus disease 2019 (COVID-19) is a global infectious disease caused by the SARS-CoV-2 coronavirus. T cells play an essential role in the body’s fighting against the virus invasion, and the T cell receptor (TCR) is crucial in T cell-mediated virus recognition and clearance. However, little has been known about the features of T cell response in convalescent COVID-19 patients. In this study, using 5′RACE technology and PacBio sequencing, we analyzed the TCR repertoire of COVID-19 patients after recovery for 2 weeks and 6 months compared with the healthy donors. The TCR clustering and CDR3 annotation were exploited to discover groups of patient-specific TCR clonotypes with potential SARS-CoV-2 antigen specificities. We first identified CD4+ and CD8+ T cell clones with certain clonal expansion after infection, and then observed the preferential recombination usage of V(D) J gene segments in CD4+ and CD8+ T cells of COVID-19 patients with different convalescent stages. More important, the TRBV6-5-TRBD2-TRBJ2-7 combination with high frequency was shared between CD4+ T and CD8+ T cells of different COVID-19 patients. Finally, we found the dominant characteristic motifs of the CDR3 sequence between recovered COVID-19 and healthy control. Our study provides novel insights on TCR in COVID-19 with different convalescent phases, contributing to our understanding of the immune response induced by SARS-CoV-2.


2021 ◽  
Author(s):  
Kevin Mohammed ◽  
Austin Meadows ◽  
Sandra Hatem ◽  
Viviana Simon ◽  
Anitha D Jayaprakash ◽  
...  

Early, high-resolution metrics are needed to ascertain the immune response to vaccinations. The T cell receptor (TCR), a heterodimer of one α and one β chain, is a promising target, with the complete TCR repertoire reflecting the T cells present in an individual. To this end, we developed Tseek, an unbiased and accurate method for profiling the TCR repertoire by sequencing the TCR α and β chains and developing a suite of tools for repertoire analysis. An added advantage is the ability to non-invasively analyze T cells in peripheral blood mononuclear cells (PBMCs). Tseek and the analytical suite were used to explore the T cell response to both the COVID-19 mRNA vaccine (n=9) and the seasonal inactivated Influenza vaccine (n=5) at several time points. Neutralizing antibody titers were also measured in the covid vaccine samples. The COVID-19 vaccine elicited a broad T cell response involving multiple expanded clones, whereas the Influenza vaccine elicited a narrower response involving fewer clones. Many distinct T cell clones responded at each time point, over a month, providing temporal details lacking in the antibody measurements, especially before the antibodies are detectable. In individuals recovered from a SARS-CoV-2 infection, the first vaccine dose elicited a robust T cell response, while the second dose elicited a comparatively weaker response, indicating a saturation of the response. The physical symptoms experienced by the recipients immediately following the vaccinations were not indicative of the TCR/antibody responses, while a weak TCR response seemed to presage a weak antibody response. We also found that the TCR repertoire acts as an individual fingerprint: donors of blood samples taken years apart could be identified solely based upon their TCR repertoire, hinting at other surprising uses the TCR repertoire may have. These results demonstrate the promise of TCR repertoire sequencing as an early and sensitive measure of the adaptive immune response to vaccination, which can help improve immunogen selection and optimize vaccine dosage and spacing between doses.


2021 ◽  
Vol 40 (1) ◽  
Author(s):  
Pamela J. Fink

I've had serious misgivings about writing this article, because from living the experience day by day, it's hard to believe my accomplishments merit the attention. To skirt this roadblock, I forced myself to pretend I was in a conversation with my trainees, trying to distill the central driving forces of my career in science. The below chronicles my evolution from would-be astronaut/ballerina to budding developmental biologist to devoted T cell immunologist. It traces my work from a focus on intrathymic events that mold developing T cells into self–major histocompatibility complex (MHC)-restricted lymphocytes to extrathymic events that fine-tune the T cell receptor (TCR) repertoire and impose the finishing touches on T cell maturation. It is a story of a few personal attributes multiplied by generous mentors, good luck, hard work, perseverance, and knowing when to step down. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Roberta Amoriello ◽  
Alice Mariottini ◽  
Clara Ballerini

T-cell receptor (TCR) repertoire diversity is a determining factor for the immune system capability in fighting infections and preventing autoimmunity. During life, the TCR repertoire diversity progressively declines as a physiological aging progress. The investigation of TCR repertoire dynamics over life represents a powerful tool unraveling the impact of immunosenescence in health and disease. Multiple Sclerosis (MS) is a demyelinating, inflammatory, T-cell mediated autoimmune disease of the Central Nervous System in which age is crucial: it is the most widespread neurological disease among young adults and, furthermore, patients age may impact on MS progression and treatments outcome. Crossing knowledge on the TCR repertoire dynamics over MS patients’ life is fundamental to investigate disease mechanisms, and the advent of high- throughput sequencing (HTS) has significantly increased our knowledge on the topic. Here we report an overview of current literature about the impact of immunosenescence and age-related TCR dynamics variation in autoimmunity, including MS.


Sign in / Sign up

Export Citation Format

Share Document