Finite element modeling of thermal behavior of molten pool in closed-loop controlled laser-based additive manufacturing

Author(s):  
Dongming Hu ◽  
Radovan Kovacevic
2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Dan Wang ◽  
Xu Chen

Abstract A high-precision additive manufacturing (AM) process, powder bed fusion (PBF) has enabled unmatched agile manufacturing of a wide range of products from engine components to medical implants. While finite element modeling and closed-loop control have been identified key for predicting and engineering part qualities in PBF, existing results in each realm are developed in opposite computational architectures wildly different in time scale. This paper builds a first-instance closed-loop simulation framework by integrating high-fidelity finite element modeling with feedback controls originally developed for general mechatronics systems. By utilizing the output signals (e.g., melt pool width) retrieved from the finite element model (FEM) to update directly the control signals (e.g., laser power) sent to the model, the proposed closed-loop framework enables testing the limits of advanced controls in PBF and surveying the parameter space fully to generate more predictable part qualities. Along the course of formulating the framework, we verify the FEM by comparing its results with experimental and analytical solutions and then use the FEM to understand the melt-pool evolution induced by the in- and cross-layer thermomechanical interactions. From there, we build a repetitive control (RC) algorithm to attenuate variations of the melt pool width.


Author(s):  
Dan Wang ◽  
Xu Chen

Abstract Powder bed fusion (PBF) additive manufacturing has enabled unmatched agile manufacturing of a wide range of products from engine components to medical implants. While high-fidelity finite element modeling and feedback control have been identified key for predicting and engineering part qualities in PBF, existing results in each realm are developed in opposite computational architectures wildly different in time scale. Integrating both realms, this paper builds a first-instance closed-loop simulation framework by utilizing the output signals retrieved from the finite element model (FEM) to directly update the control signals sent to the model. The proposed closed-loop simulation enables testing the limits of advanced controls in PBF and surveying the parameter space fully to generate more predictable part qualities. Along the course of formulating the framework, we verify the FEM by comparing its results with experimental and analytical solutions and then use the FEM to understand the melt-pool evolution induced by the in-layer thermomechanical interactions. From there, we build a repetitive control algorithm to greatly attenuate variations of the melt pool width.


1999 ◽  
Vol 105 (2) ◽  
pp. 1239-1240
Author(s):  
Vasundara V. Varadan ◽  
Young‐hun Lim ◽  
Senthil V. Gopinathan ◽  
Vijay K. Varadan

1989 ◽  
Vol 111 (4) ◽  
pp. 255-260 ◽  
Author(s):  
J. H. Lau ◽  
L. B. Lian-Mueller

The thermal stresses in microwave packages are studied by the finite element method. Emphasis is placed on the effects of material construction and design on the reliability of very small hermetic packages. Three different microwave packages have been designed and six finite element models (two for each design) have been analyzed. To verify the validity of the finite element results, some leak tests have been performed and the results agree with the analytical conclusions. The results presented herein should provide a better understanding of the thermal behavior of hermetic packages and should be useful for their optimal design.


Author(s):  
D Hu ◽  
R Kovacevic

Laser-based additive manufacturing (LBAM) is a promising manufacturing technology that can be widely applied in solid freeform fabrication (SFF), component recovery and regeneration, and surface modification. The thermal behaviour of the molten pool is one of the critical factors that influences laser deposition indices such as geometrical accuracy, material properties and residual stresses. In this paper, a three-dimensional finite element model is developed using ANSYS to simulate the thermal behaviour of the molten pool in building a single-bead wall via a closed-loop controlled LBAM process in which the laser power is controlled to keep the width of the molten pool constant. The temperature distribution, the geometrical feature of the molten pool and the cooling rate under different process conditions are investigated. To verify the simulation results, the thermal behaviour of the molten pool is measured by a coaxially installed infrared camera in experimental investigations of a closed-loop controlled LBAM process. Results from finite element thermal analysis provide guidance for the process parameter selection in LBAM, and develop a base for further residual stress analysis.


Sign in / Sign up

Export Citation Format

Share Document