scholarly journals Relation between Surface Quality of Cast Strips and Meniscus Profile of Molten Pool in the Twin Roll Casting Process.

1996 ◽  
Vol 36 (4) ◽  
pp. 417-423 ◽  
Author(s):  
Toshiaki Mizoguchi ◽  
Ken-ichi Miyazawa ◽  
Yoshiyuki Ueshima
2013 ◽  
Vol 395-396 ◽  
pp. 209-213
Author(s):  
Zhi Pu Pei ◽  
Hong Yang Zhao ◽  
Xiao Dong Hu ◽  
Dong Ying Ju

Thermal flow finite element simulation was carried out to deeply understand the solidification and deformation phenomena of magnesium alloy in molten zone during twin-roll casting process. The results show that temperature near the nip of the rolls is about 680K based on current conditions, and there are two vortexes in the molten pool during casting, a peak formed at solidus. Due to the metal flows in molten pool and relative rotates of the rolls, temperature field of molten zone is different from normal casting, which will cause the solidification structure changes. An experiment by using a vertical type twin-roll caster was also conducted, and the amount of deformation bands at the joint line is larger than that at the two sides. Substructures can be found due to dynamic recrystallization during casting process.


2007 ◽  
Vol 340-341 ◽  
pp. 695-700 ◽  
Author(s):  
Xiao Ming Zhang ◽  
Zheng Yi Jiang ◽  
L.M. Yang ◽  
Xiang Hua Liu ◽  
Guo Dong Wang

In twin-roll strip casting process, metal flow and temperature distribution in the molten pool directly affect the stability of the process and the quality of products. In this paper, a 3D coupling temperature-flow finite element simulation during twin-roll strip casting has been carried out, and the influences of the outlet angle and the submerged depth on the temperature and flow fields in the molten pool were investigated for the twin-roll casting of stainless steel. An inverse method was used to determine the boundary conditions between the roll and molten pool. Simulation results are consistent with the experimental values. Numerical simulation is helpful to optimise the twin-roll strip casting process and to improve the quality of products in practice.


2010 ◽  
Vol 443 ◽  
pp. 45-50 ◽  
Author(s):  
Hyoung Wook Kim ◽  
Jae Hyeng Cho ◽  
Cha Yong Lim ◽  
Suk Bong Kang

High strength Al-Mg alloy strips with high Mg contents (5-10wt%Mg) were successfully fabricated by twin roll casting. In order to get a good surface quality of Al-Mg strips, an optimum process condition was investigated in this experiment. The morphology of the cast nozzle and the roll separate force during twin roll casting was important to improve the surface quality of the strip and homogeneity of the cast structure through the thickness. The size of intermetallic particle like Al-Fe compounds was reduced down to 1~2m due to a high cooling rate of Al melt during strip casting. In addition, the dendrite structure was very fine and the segregation of Al8Mg5 phase between grains was remarkably reduced. Therefore, the Al-Mg strips have good workability during additional cold/warm rolling processes. After annealing, the rolled sheets have superior tensile properties to a commercial high strength Al-Mg alloy sheet.


JOM ◽  
2021 ◽  
Author(s):  
J. Victoria-Hernández ◽  
G. Kurz ◽  
J. Bohlen ◽  
S. Yi ◽  
D. Letzig

AbstractIn this work, the influence of twin-roll casting (TRC) speed on the microstructure of the through-thickness uniformity, centerline segregation, and surface quality of three wrought Mg alloys was investigated. The microstructural features of the AZ31, ZX11, and ZWK200 alloys produced at TRC speeds ranging from 1.8 m/min to 2.2 m/min (for the AZ31 and ZWK200), and 1.5–2.5 m/min (for the ZX11 alloy) were analyzed. There were clear differences in the microstructure uniformity depending on the alloy composition. Columnar grains coexisting with globular grains were found in the AZ31 and ZX11 alloys, whereas the ZWK200 alloy showed a homogeneous fine-grained microstructure characterized by a weaker texture even at the highest TRC speed used. While there is a tendency to reduce the centerline segregation as the TRC speed is decreased during casting of the AZ31 alloy, the formation of this defect cannot be prevented in the ZX11 and ZWK200 alloys by only varying the TRC speed.


2013 ◽  
Vol 690-693 ◽  
pp. 218-221
Author(s):  
Ting Zhang ◽  
Xiao Ming Zhang ◽  
Zhi Yuan Guo ◽  
Yu Qian Wang ◽  
Cheng Gang Li

Effect of secondary cooling on non-oriented electrical steel strips was investigated. The 2.0 mm thick cast strips contain two compositions were produced by twin-roll casting process, cooled in the air or cooled by spraying water. The microstructure was observed by optical microscopy, and EBSD was used to characterize the texture of the cast strips. The results showed that air-cooling cast strips have uniform and equiaxed grains with average size of 250 μm. The microstructure of the water-spraying cast strips compose of most equiaxed grains and a small number of abnormal big grains. At the same time, the secondary cooling rate mildly affects the cast texture strength but has no influence on the texture type.


Sign in / Sign up

Export Citation Format

Share Document