scholarly journals Effects of Hard Shot Peening with Water Jet on Surface Residual Stress Distribution of Carburized Steels

1994 ◽  
Vol 80 (2) ◽  
pp. 131-136 ◽  
Author(s):  
Takayoshi ISHIGURO ◽  
Toshiharu SHIMAZAKI ◽  
Kiyoshi TERAYAMA ◽  
Akio YONEGUCHI
1996 ◽  
Vol 82 (4) ◽  
pp. 303-308
Author(s):  
Takayoshi ISHIGURO ◽  
Toshiharu SHIMAZAKI ◽  
Kiyoshi TERAYAMA ◽  
Shinichi UCHIDA ◽  
Akira UNO

2018 ◽  
Vol 154 ◽  
pp. 382-387 ◽  
Author(s):  
Qiong Wu ◽  
Dong-jian Xie ◽  
Zhe-min Jia ◽  
Yi-du Zhang ◽  
Hua-zhao Zhang

2014 ◽  
Vol 63 (9) ◽  
pp. 655-661 ◽  
Author(s):  
Shoichi YASUKAWA ◽  
Shinichi OHYA ◽  
Koichi TANGO ◽  
Kazuya TAKEDA ◽  
Akira TANGE

1999 ◽  
Vol 42 (2) ◽  
pp. 216-223 ◽  
Author(s):  
Toshio TERASAKI ◽  
Jun CHEN ◽  
Tetsuya AKIYAMA ◽  
Katsuhiko KISHITAKE

Author(s):  
Balaji Sadasivam ◽  
Alpay Hizal ◽  
Dwayne Arola

Recent advances in abrasive waterjet (AWJ) technology have resulted in new processes for surface treatment that are capable of introducing compressive residual stresses with simultaneous changes in the surface texture. While the surface residual stress resulting from AWJ peening has been examined, the subsurface residual stress field resulting from this process has not been evaluated. In the present investigation, the subsurface residual stress distribution resulting from AWJ peening of Ti6Al4V and ASTM A228 steel were studied. Treatments were conducted with the targets subjected to an elastic prestress ranging from 0 to 75% of the substrate yield strength. The surface residual stress ranged from 680 to 1487 MPa for Ti6Al4V and 720 to 1554 MPa for ASTM A228 steel; the depth ranged from 265 to 370 μm for Ti6Al4V and 550 to 680 μm for ASTM A228 steel. Results showed that elastic prestress may be used to increase the surface residual stress in AWJ peened components by up to 100%.


Sign in / Sign up

Export Citation Format

Share Document