scholarly journals An integral quadratic constraint framework for real-time steady-state optimization of linear time-invariant systems

Author(s):  
Zachary E. Nelson ◽  
Enrique Mallada
2020 ◽  
Author(s):  
Alesi Augusto De Paula ◽  
Víctor Costa da Silva Campos ◽  
Guilherme Vianna Raffo ◽  
Bruno Otávio Soares Teixeira

This paper proposes a novel state estimator for discrete-time linear systems with Gaussian noise. The proposed algorithm is a fixed-gain filter, whose observer structure is more general than Kalman one for linear time-invariant systems. Therefore, the steady-state variance of the estimation error is minimized. For white noise stochastic processes, this performance criterion is reduced to the square H2 norm of a given linear time-invariant system. Then, the proposed algorithm is called observer H2 filter (OH2F). This is the standard Wiener-Hopf or Kalman-Bucy filtering problem. As the Kalman predictor and Kalman filter are well-known solutions for such a problem, they are revisited.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Yun-Chung Chu ◽  
Michael Z. Q. Chen

This paper studies the design of efficient model predictive controllers for fast-sampling linear time-invariant systems subject to input constraints to track a set of periodic references. The problem is decomposed into a steady-state subproblem that determines the optimal asymptotic operating point and a transient subproblem that drives the given plant to this operating point. While the transient subproblem is a small-sized quadratic program, the steady-state subproblem can easily involve hundreds of variables and constraints. The decomposition allows these two subproblems of very different computational complexities to be solved in parallel with different sampling rates. Moreover, a receding horizon approach is adopted for the steady-state subproblem to spread the optimization over time in an efficient manner, making its solution possible for fast-sampling systems. Besides the conventional formulation based on the control inputs as variables, a parameterization using a dynamic policy on the inputs is introduced, which further reduces the online computational requirements. Both proposed algorithms possess nice convergence properties, which are also verified with computer simulations.


Sign in / Sign up

Export Citation Format

Share Document