Design of Flat Optical Fiber Sensor for Triaxial Strain Monitoring in Composite Laminates

Author(s):  
Andrea Annunziato ◽  
Francesco Anelli ◽  
Michael Godfrey ◽  
Janice M Barton ◽  
Christopher Holmes ◽  
...  
2007 ◽  
Vol 41 (7) ◽  
pp. 785-800 ◽  
Author(s):  
Sung-Choong Woo ◽  
Nak-Sam Choi ◽  
Il-Bum Kwon ◽  
Kyong Y. Rhee

Author(s):  
Hideaki Murayama ◽  
Kazuro Kageyama ◽  
Kohei Ohara ◽  
Kiyoshi Uzawa ◽  
Makoto Kanai ◽  
...  

Defects and damage in a structural joint can trigger a critical degradation or collapse of the structure. Among joints, welded joints have many uncertainties, such as remaining stress, initial defects, and heat-affected zone. Such uncertainties in a welded joint can also induce a strain fluctuation, when they are subjected to a load. Conversely, the strain fluctuation along the weld line may represent the presence of uncertainties in the welded joint. This means that monitoring strain distribution along the weld line can be good way to assess their integrity and improve reliability of the structure. We have developed a novel distributed strain measurement technique which can measure strain distributions along fiber Bragg gratings (FBG) in an optical fiber and has the high spatial resolution and we applied it to strain monitoring of a welded tubular joint. The spatial resolution o is less than 1 mm and it was confirmed by measurement simulations and experiments. Then, we measured the strain distributions along the weld line of the tubular joint of a steel pipe subjected to a tensile load by the developed measurement system. We could successfully measure the development of the strain distribution along the weld line, where the sharply fluctuating strain distributions resulting from some defects were observed. In this paper, we describe the measurement principle and performance of the optical fiber sensor, and then show the results of strain monitoring in the welded joint.


2003 ◽  
Vol 52 (6) ◽  
pp. 688-694 ◽  
Author(s):  
Masaaki JINNO ◽  
Shigeru SAKAI ◽  
Katsuhiko OSAKA ◽  
Takehito FUKUDA

2018 ◽  
Vol 56 (1) ◽  
pp. 94-99
Author(s):  
N. Sogabe ◽  
S. Nakaue ◽  
K. Chikiri ◽  
M. Hayakawa

2019 ◽  
Vol 5 (0) ◽  
pp. 19-00095-19-00095
Author(s):  
Shogo FUJIMOTO ◽  
Suguru UEMURA ◽  
Nobuyuki IMANISHI ◽  
Shuichiro HIRAI

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1166
Author(s):  
Bin Liu ◽  
Jianping He ◽  
Shihai Zhang ◽  
Yinping Zhang ◽  
Jianan Yu ◽  
...  

Brillouin frequency shift (BFS) of distributed optical fiber sensor is extracted from the Brillouin gain spectrum (BGS), which is often characterized by Lorenz type. However, in the case of complex stress and optical fiber self damage, the BGS will deviate from Lorenz type and be asymmetric, which leads to the extraction error of BFS. In order to enhance the extraction accuracy of BFS, the Lorenz local single peak fitting algorithm was developed to fit the Brillouin gain spectrum curve, which can make the BSG symmetrical with respect to the Brillouin center frequency shift. One temperature test of a fiber-reinforced polymer (FRP) packaged sensor whose BSG curve is asymmetric was conducted to verify the idea. The results show that the local region curve of BSG processed by the developed algorithm has good symmetry, and the temperature measurement accuracy obtained by the developed algorithm is higher than that directly measured by demodulation equipment. Comparison with the reference temperature, the relative measurement error measured by the developed algorithm and BOTDA are within 4% and 8%, respectively.


Sign in / Sign up

Export Citation Format

Share Document