Self-Starting Analysis of New Energy System with Wind Power and Energy Storage

Author(s):  
Aihua Wang ◽  
Hong Gang ◽  
Peng Qiu ◽  
Xiaole Luo ◽  
Xinfu Pang ◽  
...  
2021 ◽  
Vol 13 (6) ◽  
pp. 3098
Author(s):  
Jing Wu ◽  
Zhongfu Tan ◽  
Keke Wang ◽  
Yi Liang ◽  
Jinghan Zhou

With the development of renewable energy, the grid connection is faced with great pressure, for its generation uncertainty and fluctuation requires larger reserve capacity, and higher operation costs. Energy storage system, as a flexible unit in the energy system, can effectively share the reserve pressure of the system by charging and discharging behaviors. In order to further improve the renewable energy utilization, the combination of wind power and energy storage for hybrid energy system is proposed. On considering the power generation characteristics, the objective functions are maximizing the system revenue and minimizing the system energy loss. Combined with the robust optimization theory, the model is transformed and solved. The results show that the application of the energy storage will effectively promote the renewable energy consumption, and the combination of the wind power and energy storage will achieve more effective utilization of the night-time wind power and cut down the total system cost.


2015 ◽  
Vol 6 (4) ◽  
pp. 1524-1533 ◽  
Author(s):  
Pilar Meneses de Quevedo ◽  
Javier Contreras ◽  
Marcos J. Rider ◽  
Javad Allahdadian

2020 ◽  
Vol 8 ◽  
Author(s):  
Luca Riboldi ◽  
Erick F. Alves ◽  
Marcin Pilarczyk ◽  
Elisabetta Tedeschi ◽  
Lars O. Nord

This paper presents an innovative hybrid energy system for stable power and heat supply in offshore oil and gas installations. The proposed concept integrates offshore wind power, onsite gas turbines and an energy storage system based on fuel cell and electrolyzer stacks. It is expected to be an effective option to decarbonize the offshore petroleum sector as it allows a more extensive exploitation of the offshore wind resource by means of energy storage. To ascertain its potential, an integrated model was developed. The integrated model allows to simulate the process and electric grid performances. The inclusion of both domains provides a comprehensive picture of a given design operational performance. The feasibility of the proposed concept was first investigated through a parametric analysis where an understanding of its potential and limitations was gained. A rigorous optimization was then implemented to identify the designs resulting in the best performances and ultimately to obtain a comprehensive picture of the suitability of the concept. It is shown that a well-designed system can reduce carbon emissions compared, not only to a standard concept based on gas turbines (almost 1,300 kt less CO2 emissions, making up for a relative 36% reduction), but also to the integration of a wind farm alone (more than 70 kt less CO2 emissions, making up for a relative 3% reduction, but complying with grid dynamics requirements). Moreover, the energy storage system brings benefits to the electric grid stability and allows the integration of large wind power capacity without overpassing the 2% maximum frequency variation (as it is the case without energy storage). Not least, the optimization showed that the definition of an optimal design is a complex task, with little margin to further gains in terms of carbon emissions, likely due to technological limitations.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3964 ◽  
Author(s):  
Quanming Zhang ◽  
Zhichao Ren ◽  
Ruiguang Ma ◽  
Ming Tang ◽  
Zhongxiao He

With the wide application of multi-energy storage technology in the regional integrated energy system, the configuration of multi-energy storage devices is expected to enhance the economic benefits of regional integrated energy systems. To start with, in this paper, the basic framework of the regional integrated energy system is constructed, and a mathematical model of micro-gas turbine, gas boiler, distributed wind power and multi-energy storage device is established. Then, the multi-energy storage and double-layer planning configuration model with multi-energy complementation is established. The upper level of the model aims to minimize the comprehensive investment cost of multi-energy storage, while the lower level of the model aims to minimize the comprehensive systematic operating cost, in which the net losses cost is also included and the required multi-energy storage capacity from the upper level is set as its constraint. During the programming and problem solving, the second-order conic relaxation technology is introduced to realize the convex relaxation for power flow constraint. At the same time, the piecewise linearization method is adopted to deal with the natural gas pipeline flow constraint, which can convert the original model into a mixed integer programming problem. In the end, the example analysis is carried out in the IEEE 33-bus system and the improved 6-node natural gas system. The results show that the multi-energy storage technology can improve the economics of the regionally integrated energy system to a certain extent, and have verified the validity of the model.


Sign in / Sign up

Export Citation Format

Share Document