Fault Diagnosis Method Based on Indiscernibility and Dynamic Kernel Principal Component Analysis

Author(s):  
Kun Zhai ◽  
Feng Lyu ◽  
Xiyuan Jv ◽  
Tao Xin
2015 ◽  
Vol 731 ◽  
pp. 395-400 ◽  
Author(s):  
Qian Qian Xu ◽  
Hai Yan Zhang ◽  
He Ping Hou ◽  
Zhuo Fei Xu

The printing machine is a sort of large-scale equipment characterized by high speed and precision. A fault diagnosis method based on kernel principal component analysis (KPCA) and K-means clustering is developed to classify the types of feeding fault. The multidimensional and nonlinear data of printed image could be reduced by KPCA to make up the deficiency of the traditional K-means clustering method. In this paper, it is experimentally verified that the classification accuracy of the combined method is higher than the traditional clustering analysis method in feeding fault detection and diagnosis. This method provides a shortcut for the determination of fault sources and realizes multi-faults diagnosis of printing machinery efficiently


Robotica ◽  
2021 ◽  
pp. 1-20
Author(s):  
Jing Yang ◽  
Lingyan Jin ◽  
Zejie Han ◽  
Deming Zhao ◽  
Ming Hu

Abstract As an important index to quantitatively measure the motion performance of a manipulator, motion reliability is affected by many factors, such as joint clearance. The present research utilized a UR10 manipulator as the research object. A factor mapping model for influencing the motion reliability was established. The link flexibility factor, joint flexibility factor, joint clearance factor, and Denavit–Hartenberg (DH) parameters were comprehensively considered in this model. The coupling relationship among the various factors was concisely expressed. Subsequently, the nonlinear response surface method was used to calculate the reliability and sensitivity of the manipulator, which provided an applicable reference for its trajectory planning and motion control. In addition, a data-driven fault diagnosis method based on the kernel principal component analysis (KPCA) was used to verify the motion accuracy and sensitivity of the manipulator, and joint rotation failure was considered as an example to verify the accuracy of the KPCA method. This study on the motion reliability of the manipulator is of great significance for the current motion performance, adjusting the control strategy and optimizing the completion effect of the motion task of a manipulator.


Sign in / Sign up

Export Citation Format

Share Document