Modeling and Optimal Control of Energy Storage Strategy For Battery Life Extension Via Model Predictive Control

Author(s):  
Muhammad Shehzad ◽  
Florimond Gueniat
2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Mohamed L. Shaltout ◽  
Mohamed M. Alhneaish ◽  
Sayed M. Metwalli

Abstract Wind power intermittency represents one of the major challenges facing the future growth of grid-connected wind energy projects. The integration of wind turbines and energy storage systems (ESS) provides a viable approach to mitigate the unfavorable impact on grid stability and power quality. In this study, an economic model predictive control (MPC) framework is presented for an integrated wind turbine and flywheel energy storage system (FESS). The control objective is to smooth wind power output and mitigate tower fatigue load. The optimal control problem within the model predictive control framework has been formulated as a convex optimal control problem with linear dynamics and convex constraints that can be solved globally. The performance of the proposed control algorithm is compared to that of a baseline wind turbine controller. The effect of the proposed control actions on the fatigue loads acting on the tower and blades is investigated. The simulation results, with various wind scenarios, showed the ability of the proposed control algorithm to achieve the aforementioned objectives in terms of smoothing output power and mitigating tower fatigue load with negligible effect on the wind energy harvested.


2021 ◽  
Vol 13 (24) ◽  
pp. 13907
Author(s):  
Xin Wang ◽  
Jason Atkin ◽  
Najmeh Bazmohammadi ◽  
Serhiy Bozhko ◽  
Josep M. Guerrero

Safety issues related to the electrification of more electric aircraft (MEA) need to be addressed because of the increasing complexity of aircraft electrical power systems and the growing number of safety-critical sub-systems that need to be powered. Managing the energy storage systems and the flexibility in the load-side plays an important role in preserving the system’s safety when facing an energy shortage. This paper presents a system-level centralized operation management strategy based on model predictive control (MPC) for MEA to schedule battery systems and exploit flexibility in the demand-side while satisfying time-varying operational requirements. The proposed online control strategy aims to maintain energy storage (ES) and prolong the battery life cycle, while minimizing load shedding, with fewer switching activities to improve devices lifetime and to avoid unnecessary transients. Using a mixed-integer linear programming (MILP) formulation, different objective functions are proposed to realize the control targets, with soft constraints improving the feasibility of the model. In addition, an evaluation framework is proposed to analyze the effects of various objective functions and the prediction horizon on system performance, which provides the designers and users of MEA and other complex systems with new insights into operation management problem formulation.


Author(s):  
Xin Wang ◽  
Jason Atkin ◽  
Najmeh Bazmohammadi ◽  
Serhiy Bozhko ◽  
and Josep M. Guerrero

Abstract: Safety issues related to the electrification of more electric aircraft (MEA) need to be addressed because of the increasing complexity of aircraft electrical power systems and the growing number of safety-critical sub-systems that need to be powered. Managing the energy storage systems and the flexibility in the load-side plays an important role in preserving the system’s safety when facing an energy shortage. This paper presents a system-level centralized operation management strategy based on model predictive control (MPC) for MEA to schedule battery systems and exploit flexibility in the demand-side while satisfying time-varying operational requirements. The proposed online control strategy aims to maintain energy storage (ES) and prolong the battery life cycle, while minimizing load shedding, with fewer switching activities to improve devices lifetime and to avoid unnecessary transients. Using a mixed-integer linear programming (MILP) formulation, different objective functions are proposed to realize the control targets, with soft constraints improving the robustness of the model. Besides, an evaluation framework is proposed to analyze the effects of various objective functions and the prediction horizon on system performance, which provides the designers and users of MEA and other complex systems with new insights into operation management problem formulation.


Sign in / Sign up

Export Citation Format

Share Document