Calibration of 93.1GHz FOD Detection Radar on Airport Runway using Trihedral Corner Reflector

Author(s):  
N. A. Yusri ◽  
S. M. Idrus ◽  
N. Mohamed ◽  
S. Ambran ◽  
F. Iqbal ◽  
...  
2019 ◽  
Vol 20 (2) ◽  
pp. 383-394 ◽  
Author(s):  
Jing Peng ◽  
Jiayi Ouyang ◽  
Lei Yu ◽  
Xinchen Wu

Abstract Recently urban waterlogging problems have become more and more serious, and the construction of an airport runway makes the impervious area of the airport high, which leads to the deterioration of the water environment and frequent waterlogging disasters. It is of great significance to design and construct the sponge airport with low impact development (LID) facilities. In this paper, we take catchment N1 of Beijing Daxing International Airport as a case study. The LID facilities are designed and the runoff process of a heavy rainfall in catchment N1 is simulated before and after the implementation of LID facilities. The results show that the total amount of surface runoff, the number of overflow junctions and full-flow conduits of the rainwater drainage system in catchment N1 of Beijing Daxing International Airport are significantly reduced after the implementation of the LID facilities. Therefore, the application of LID facilities has greatly improved the ability of the airport to remove rainwater and effectively alleviated the risk of waterlogging in the airport flight area. This study provides theoretical support for airport designers and managers to solve flood control and rainwater drainage problems and has vital practical significance.


2021 ◽  
Vol 284 ◽  
pp. 122702
Author(s):  
Yu Tian ◽  
Peng Xiang ◽  
Shifu Liu ◽  
Jianming Ling ◽  
Rui Tang

1983 ◽  
Vol 4 (3) ◽  
pp. 321-325 ◽  
Author(s):  
K. Mizuno ◽  
T. Suzuki ◽  
S. Ono ◽  
K. Sagae

2011 ◽  
Vol 214 ◽  
pp. 133-137 ◽  
Author(s):  
Xu Dong Shi ◽  
Shou Wen Shi ◽  
Lu Zhang ◽  
Jian Li Li

Airport runway friction coefficient is an important parameter to evaluate the quality of runway which is usually measured by runway friction coefficient measuring vehicle. In order to reduce the airport runway friction coefficient measuring error which comes from runway vibration caused by road roughness and vehicle its own structural characteristics, an impedance diagram is used to model the suspending system and measuring system of the measuring vehicle. The power spectral density of pavement and inverse discrete Fourier transformation are introduced to model runway surface roughness as excitation input. The rationality of the stimulating established model is validated by comparing with an airport runway surface roughness measurement data. Runway friction coefficient measuring vehicle′s measuring error can be reduced and the measurement accuracy can be improved by using the impedance diagram modeling method.


Sign in / Sign up

Export Citation Format

Share Document