impervious area
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 56)

H-INDEX

17
(FIVE YEARS 4)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 14
Author(s):  
Hussain Shahzad ◽  
Baden Myers ◽  
Guna Hewa ◽  
Tim Johnson ◽  
John Boland ◽  
...  

The conveyance of stormwater has become a major concern for urban planners, considering its harmful effects for receiving water bodies, potentially disturbing their ecosystem. Therefore, it is important to characterize the quality of catchment outflows. This information can assist in planning for appropriate mitigation measures to reduce stormwater runoff discharge from the catchment. To achieve this aim, the article reports the field data from a typical urban catchment in Australia. The pollutant concentration from laboratory testing is then compared against national and international reported values. In addition, a stochastic catchment model was prepared using MUSIC. The study in particular reported on the techniques to model distributed curbside leaky wells with appropriate level of aggregation. The model informed regarding the efficacy of distributed curbside leaky well systems to improve the stormwater quality. The results indicated that catchment generated pollutant load, which is typical of Australian residential catchments. The use of distributed storages only marginally improves the quality of catchment outflows. It is because ability of distributed leaky wells depended on the intercepted runoff volume which is dependent on the hydrological storage volume of each device. Therefore, limited storage volume of current systems resulted in higher contributing area to storage ratio. This manifested in marginal intercepted volume, thereby only minimum reduction in pollutant transport from the catchment to outlet. Considering strong correlation between contributing impervious area and runoff pollutant generation, the study raised the concern that in lieu of following the policy of infill development, there can be potential increase in pollutant concentration in runoff outflows from Australian residential catchments. It is recommended to monitor stormwater quality from more residential catchments in their present conditions. This will assist in informed decision-making regarding adopting mitigations measures before considering developments.


Author(s):  
Joseph Mcdonnell ◽  
Davide Motta

Abstract Most previous quantitative research conducted on urban creep and urban expansion has focused on small areas, short time periods, case studies with fairly uniform housing stock and demographic makeup, and the characterisation of urban creep and expansion exclusively in terms of impervious area changes without quantification of the consequential hydrological impact, i.e., increase in surface runoff volume and peak flows in a catchment. This study, using satellite imagery, catchment characteristics data, geographic information system and hydrologic modelling, presents, for the first time, a long-term analysis of urban creep and expansion. The case study is the Ouseburn catchment in Newcastle upon Tyne, a wide-ranging catchment made up of rural, suburban and urban areas, over a period of seven decades. The rate of increase of impervious surfaces is found not to be constant in time; the significant impact of this variation on the catchment's hydrologic response is quantified. This has overall caused a substantial flow volume increase in the Ouseburn over the study period, e.g. 48% for a 1 in 5 years rainfall event. The conclusions obtained are likely representative of many large towns and cities across the United Kingdom and the methodology presented can be easily replicated in other study areas.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1779
Author(s):  
Jinghui Han ◽  
Yulin Dong ◽  
Zhibin Ren ◽  
Yunxia Du ◽  
Chengcong Wang ◽  
...  

Forest landscape multifunctionality (FLM) provides multiple benefits, such as climate regulation, water storage, and biodiversity maintenance. However, the external factors limiting FLM have not been fully identified, although addressing them could contribute to sustainable development. The present study aimed to identify and quantify the role of urbanization as an external factor that affects FLM. To this end, impervious area changes in Liaoyuan, China, were observed from 2000 to 2018, and 10 buffer zones at 500 m intervals were established outside the city. Within each buffer zone, we analyzed changes in forest landscape functions, including habitat maintenance, carbon sequestration, and water yield, as well as changes in the multifunctionality of their composition. The urbanization of Liaoyuan was significant in 2000–2018. The functions of the forest landscape became stronger and more stable as they were located further away from the urban edge. We refer to this pattern as the gradient effect of urbanization. Specifically, urbanization affected the investigated functions at a distance of 1000–2500 m. The FLM showed a more significant gradient effect of urbanization. The impact distance of urbanization on the FLM increased from 3000 m in 2000 to over 5000 m in 2018. This impact distance increased significantly whenever urbanization strengthened significantly (i.e., in 2005–2010 and 2015–2018). These findings are instructive for forest and urban managers working to achieve multiple Sustainable Development Goals.


2021 ◽  
Author(s):  
Jing Peng ◽  
Lei Yu ◽  
Xiang Zhong ◽  
Tiansong Dong

Abstract The impervious area of the airport is high, which leads to the deterioration of the water environment and frequent waterlogging disasters. The construction of sponge airport has become an important and arduous task in the new era of civil aviation design industry in China. In order to compare the effects of different control measures at different scenarios, take the airport along China's southeast coast as an example, three scenarios were designed in this study (Scenario 1: no LID facilities and other measures; Scenario 2: two pump stations were setting; Scenario 3: both LID facilities and pump stations). Three simulation models under LID facilities and other measures were developed using SWMM with return period of 5a. The simulation results at different scenarios were compared, the number and the best opening scheme of pumps for each reservoir are finally obtained. The results of Scenario 3 show that the full-flow duration of nodes in the study area is greatly shortened. The decrease of full-flow duration of J1, J2 and J3 was 1.2, 0.8 and 0.5 hours respectively, with reduction rates of 40%, 53.3% and 28.6% respectively. The rainfall peak flows both the first and the second were reduced in this scenario, and the reduction rates were 10.68% and 12.78% respectively. However, the reduction effect of the third peak is poor with the further increase of rainfall intensity. The reduction rate of the total inflow and peak flow of rainwater buckets and permeable pavement is better than that of vegetative swale. The results of this study can provide the reference for the design of sponge airport and the airport flood control management.


2021 ◽  
Vol 10 (11) ◽  
pp. 778
Author(s):  
Adam Irwansyah Fauzi ◽  
Anjar Dimara Sakti ◽  
Balqis Falah Robbani ◽  
Mita Ristiyani ◽  
Rahiska Tisa Agustin ◽  
...  

Blue carbon ecosystems are key for successful global climate change mitigation; however, they are one of the most threatened ecosystems on Earth. Thus, this study mapped the climatic and human pressures on the blue carbon ecosystems in Indonesia using multi-source spatial datasets. Data on moderate resolution imaging spectroradiometer (MODIS) ocean color standard mapped images, VIIRS (visible, infrared imaging radiometer suite) boat detection (VBD), global artificial impervious area (GAIA), MODIS surface reflectance (MOD09GA), MODIS land surface temperature (MOD11A2), and MODIS vegetation indices (MOD13A2) were combined using remote sensing and spatial analysis techniques to identify potential stresses. La Niña and El Niño phenomena caused sea surface temperature deviations to reach −0.5 to +1.2 °C. In contrast, chlorophyll-a deviations reached 22,121 to +0.5 mg m−3. Regarding fishing activities, most areas were under exploitation and relatively sustained. Concerning land activities, mangrove deforestation occurred in 560.69 km2 of the area during 2007–2016, as confirmed by a decrease of 84.9% in risk-screening environmental indicators. Overall, the potential pressures on Indonesia’s blue carbon ecosystems are varied geographically. The framework of this study can be efficiently adopted to support coastal and small islands zonation planning, conservation prioritization, and marine fisheries enhancement.


2021 ◽  
Author(s):  
Jing Peng ◽  
Lei Yu ◽  
Xiang Zhong ◽  
Tiansong Dong

Abstract The impervious area of the airport is high, which leads to the deterioration of the water environment and frequent waterlogging disasters. The construction of sponge airport has become an important and arduous task in the new era of civil aviation design industry in China. In order to compare the effects of different control strategies at different scenarios, take the airport along China's southeast coast as an example, three scenarios were designed in this study (Scenario 1: no LID facilities and other measures; Scenario 2: two pump stations were setting; Scenario 3: both LID facilities and pump stations). Three simulation models under LID facilities and other measures were developed using SWMM with return period of 5a. The simulation results at different scenarios were compared, the number and the best opening scheme of pumps for each reservoir are finally obtained. The results of Scenario 3 show that the full-flow duration of nodes in the study area is greatly shortened. The decrease of full-flow duration of J1, J2 and J3 was 1.2, 0.8 and 0.5 hours respectively, with reduction rates of 40%, 53.3% and 28.6% respectively. The rainfall peak flows both the first and the second were reduced in this scenario, and the reduction rates were 10.68% and 12.78% respectively. However, the reduction effect of the third peak is poor with the further increase of rainfall intensity. The reduction rate of the total inflow and peak flow of rainwater buckets and permeable pavement is better than that of vegetative swale. The results of this study can provide the reference for the design of sponge airport and the airport flood control management.


2021 ◽  
Vol 11 (21) ◽  
pp. 10044
Author(s):  
Mohammad Reza Ramezani ◽  
Bofu Yu ◽  
Yahui Che

Total imperviousness (residential and non-residential) increases with population growth in many regions around the world. Population density has been used to predict the total imperviousness in large areas, although population size was only closely related to residential imperviousness. In this study, population density together with land use data for 154 suburbs in Southeast Queensland (SEQ) of Australia were used to develop a new model for total imperviousness estimation. Total imperviousness was extracted through linear spectral mixing analysis (LSMA) using Landsat 8 OLI/TIRS, and then separated into residential and non-residential areas based on land use data for each suburb. Regression models were developed between population density and total imperviousness, and population density and residential imperviousness. Results show that (1) LSMA approach could retrieve imperviousness accurately (RMSE < 10%), (2) linear regression models could be used to estimate both total imperviousness and residential imperviousness better than nonlinear regression models, and (3) correlation between population density and residential imperviousness was higher (R2 = 0.77) than that between population density and total imperviousness (R2 = 0.52); (4) the new model was used to predict the total imperiousness based on population density projections to 2057 for three potential urban development areas in SEQ. This research allows accurate prediction of the total impervious area from population density and service area per capital for other regions in the world.


2021 ◽  
Vol 6 (2) ◽  
pp. 65
Author(s):  
Ade Kurnia Putri ◽  
Junaidi Junaidi ◽  
Bambang Istijono

Sungai Anak Jaya Setia 1 yang terletak di Kabupaten Bungo sering mengalami banjir. Saluran drainase yang ada masih berupa saluran drainase alami. Tujuan utama dalam penelitian ini adalah menganalisa perhitungan saluran drainase di daerah Sungai Anak Jaya Setia 1 dengan debit banjir rencana 5 tahun untuk saluran sekunder, merencanakan Storage  sebagai pembuangan akhir dari saluran drainase, Membandingkan menggunakan Storage sebagai membuangan akhir dan tanpa Stoarge. Data-data yang digunakan pada penelitian ini adalah  peta tata guna lahan untuk penentuan persentase impervious area, data hujan. Seri data hujan yang digunakan merupakan data hujan jam-jaman. Maka dari itu perlunya melakukan modifikasi pada data curah hujan, penentuan distribusi hujan jam-jaman dilakukan dengan mengubah lengkung Intensitas-Durasi-Frekuensi (IDF)  untuk periode ulang 5 tahun menjadi hyetograph hujan rencana dengan menggunakan Alternating Block Method (ABM). Setelah semua parameter input EPA SWMM 5.1 ditentukan dan diinputkan sehingga simulasi dapat dilakukan. Kualitas simulasi cukup baik apabila continuity error untuk limpasan permukaan dan penelusuran aliran < 10%. Simulasi yang dilakukan pada penelitian ini dibagi menjadi 2 skenario. Dari 2 skenario yang dilakukan jumlah  titik banjir pada skenario 1 berjumlah 4 titik yang berada pada Junc 4, Junc 11, Junc 15 dan Junc 16. Sedangkan pada skenario 2 dengan di tambakannya Storage sebagai tempat penampungan air sementara sebelum di alirkan ke Outall terdapat 2 titik banjir yaitu pada Junc 12 dan Storage 2. Hal ini menunjukkan bahwa menambahkan storage sebagai tempat pembuangan cukup membantu mengurangi titik banjir.


Author(s):  
Li Li ◽  
Qidi Yu ◽  
Ling Gao ◽  
Bin Yu ◽  
Zhipeng Lu

The main functions of this research are to guide the proportion of urban land that is used and the layout of the facilities on it, help understand the changes to surface runoff that are caused by land being used in urban development, and thus solve surface runoff pollution. Hangzhou City, China has been selected for the experiment, and the way in which its land is utilized as well as the grading of urban construction projects in the demonstration area are specifically analyzed. This study systematically distinguishes the definitions of impervious area based on the Sutherland equation and analyzes the impact of different impervious area subtypes on surface runoff water quality. Then, we compare the impact of impervious area subtypes with the impact of other land-use patterns on surface runoff water quality. This study shows the relationship between different land-use types and runoff water bodies: Land-use index can affect runoff water quality; Greening activities, impervious surface, and the water quality index are negatively correlated; the effective impervious area rate is positively correlated with the water quality index. The paper suggests that increasing the proportion of green spaces and permeable roads in build-up land reduces the effective impervious area (EIA) and thus controls land runoff pollution and improves runoff water quality.


Sign in / Sign up

Export Citation Format

Share Document