State Estimation for Medium and Low Voltage Distribution Grids Based on Near Real-time Grid Measurements and Delayed Smart Meters Data

Author(s):  
Mohammad Rayati ◽  
Thomas Pidancier ◽  
Mauro Carpita ◽  
Mokhtar Bozorg
Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5367 ◽  
Author(s):  
Karthikeyan Nainar ◽  
Florin Iov

The installation of smart meters at customer premises provides opportunities for the monitoring of distribution grids. This paper addresses the problem of improving the observability of low-voltage distribution grids using smart metering infrastructure. In particular, this paper deals with the application of state estimation algorithm using smart meter measurements for near-real-time monitoring of low-voltage distribution grids. This application is proposed to use a nonlinear weighted least squares method-based algorithm for estimating the node voltages from minimum number of smart meter measurements. This paper mainly deals with sensitivity analysis of the state estimation algorithm with respect to multiple uncertainties for, e.g., measurements errors, line parameter errors, and pseudo-measurements. Simulation studies are conducted to estimate the accuracy of the DSSE under various operating scenarios of a real-life low-voltage grid, and cost-effective ways to improve the accuracy of the state estimation algorithm are also evaluated. The paper concludes that by using smart meter measurements from few locations, voltage profiles of the low-voltage grid can be estimated with reasonable accuracy in near-real-time.


2018 ◽  
Vol 69 ◽  
pp. 02012
Author(s):  
Yana Kuzkina ◽  
Irina Golub

The paper presents a solution to the problem of organization of a system for collecting and transmitting information about measurements from smart meters necessary for the state estimation of a low-voltage distribution network. The problems of providing the sufficiency of measurements for the observability of the network and the influence of errors in the information about load connection to phases on the quality of the observability are considered. The results of allocation of smart meters and the state estimation of the real distribution network are given.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7421
Author(s):  
Fabio Napolitano ◽  
Juan Diego Rios Penaloza ◽  
Fabio Tossani ◽  
Alberto Borghetti ◽  
Carlo Alberto Nucci

The state estimation of distribution networks has long been considered a challenging task for the reduced availability of real-time measures with respect to the transmission network case. This issue is expected to be improved by the deployment of modern smart meters that can be polled at relatively short time intervals. On the other hand, the management of the information coming from many heterogeneous meters still poses major issues. If low-voltage distribution systems are of interest, a three-phase formulation should be employed for the state estimation due to the typical load imbalance. Moreover, smart meter data may not be perfectly synchronized. This paper presents the implementation of a three-phase state estimation algorithm of a real portion of a low-voltage distribution network with distributed generation equipped with smart meters. The paper compares the typical state estimation algorithm that implements the weighted least squares method with an algorithm based on an iterated Kalman filter. The influence of nonsynchronicity of measurements and of delays in communication and processing is analyzed for both approaches.


Author(s):  
Marija Markovic ◽  
Amirhossein Sajadi ◽  
Anthony Florita ◽  
Robert Cruickshank III ◽  
Bri-Mathias Hodge

2021 ◽  
Author(s):  
Ramanuja Panigrahi ◽  
Santanu Mishra ◽  
Suresh C. Srivastava ◽  
Prasad Enjeti

<em>Realizing a smart Low Voltage Distribution System (LVDS) is essential to realize a smart grid. Restructuring the existing distribution system into microgrids is one important requirement to achieve a smart LVDS. The realization of microgrids in LVDS can take different shapes in different countries. This article discusses the challenges and practical solutions to realize a smart LVDS for radial distribution grids, which are common in India. The network following a distribution transformer can be distinguished as a microgrid for radial low voltage distribution grids. However, this leads to many operational issues. Therefore, this article envisions replacing the Low Voltage distribution transformers with <a>Solid-State Transformers </a>(SSTs). This will enable the LVDS to control the power exchange between the phases within a microgrid as well as power exchange between different microgrids. The architectural design of a smart home in smart LVDS is outlined to complete the discussion. Various unique features required for smart inverters in a smart home and existing grid codes to make them compatible with smart LVDS are also reviewed.</em><i></i>


Sign in / Sign up

Export Citation Format

Share Document