Decision-Feedback Differential Detection with Optimum Detection Order Metric for Noncoherent Massive MIMO Systems

Author(s):  
George Yammine ◽  
Robert F.H. Fischer
2021 ◽  
Author(s):  
Omnia Mahmoud ◽  
Ahmed El-Mahdy ◽  
Robert F. H. Fischer

<div>In this work, non-coherent massive MIMO differential phase-shift keying modulation (DPSK) detection is considered to get rid of the complexity of channel estimation. However, most of the well-performing DPSK detection techniques require high computational complexity at the receiver. The use of deep-learning is proposed for detecting the transmitted DPSK symbols over a single-user massive MIMO system. We provide a multiple-symbol differential detection implementation using deep-learning. Two deep-learning-based multiple-symbol differential detection receiver designs are proposed and compared with differential detection (DD), decision-feedback differential detection (DFDD), and multiple-symbol differential detection (MSDD) for the same system parameters. Where multiple-symbol differential sphere detection (MSDSD) is used to implement MSDD. The results show that the proposed deep-learning-based classification neural networks outperform decision-feedback differential detection and achieve an optimal performance compared to conventional multiple-symbol differential detection implemented by multiple-symbol differential sphere detection.</div>


2021 ◽  
Author(s):  
Omnia Mahmoud ◽  
Ahmed El-Mahdy ◽  
Robert F. H. Fischer

<div>In this work, non-coherent massive MIMO differential phase-shift keying modulation (DPSK) detection is considered to get rid of the complexity of channel estimation. However, most of the well-performing DPSK detection techniques require high computational complexity at the receiver. The use of deep-learning is proposed for detecting the transmitted DPSK symbols over a single-user massive MIMO system. We provide a multiple-symbol differential detection implementation using deep-learning. Two deep-learning-based multiple-symbol differential detection receiver designs are proposed and compared with differential detection (DD), decision-feedback differential detection (DFDD), and multiple-symbol differential detection (MSDD) for the same system parameters. Where multiple-symbol differential sphere detection (MSDSD) is used to implement MSDD. The results show that the proposed deep-learning-based classification neural networks outperform decision-feedback differential detection and achieve an optimal performance compared to conventional multiple-symbol differential detection implemented by multiple-symbol differential sphere detection.</div>


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 533
Author(s):  
Daniel Fernandes ◽  
Francisco Cercas ◽  
Rui Dinis

In the Fifth Generation of telecommunications networks (5G), it is possible to use massive Multiple Input Multiple Output (MIMO) systems, which require efficient receivers capable of reaching good performance values. MIMO systems can also be extended to massive MIMO (mMIMO) systems, while maintaining their, sometimes exceptional, performance. However, we must be aware that this implies an increase in the receiver complexity. Therefore, the use of mMIMO in 5G and future generations of mobile receivers will only be feasible if they use very efficient algorithms, so as to maintain their excellent performance, while coping with increasing and critical user demands. Having this in mind, this paper presents and compares three types of receivers used in MIMO systems, for further use with mMIMO systems, which use Single-Carrier with Frequency-Domain Equalization (SC-FDE), Iterative Block Decision Feedback Equalization (IB-DFE) and Maximum Ratio Combining (MRC) techniques. This paper presents and compares the theoretical and simulated performance values for these receivers in terms of their Bit Error Rate (BER) and correlation factor. While one of the receivers studied in this paper achieves a BER performance nearly matching the Matched Filter Bound (MFB), the other receivers (IB-DFE and MRC) are more than 1 dB away from MFB. The results obtained in this paper can help the development of ongoing research involving hybrid analog/digital receivers for 5G and future generations of mobile communications.


Sign in / Sign up

Export Citation Format

Share Document